AD-A247 516
ACHIEILAERAEN o

Architectural Adaptability
in Parallel Programming

Lawrence Alan Crowl

Technical Report 381
May 1991

92-0632
AR I. lll‘

UNIVERSITY OF

ROCHESTER

COMPUTER SCIENCE

- Best
- Available
Copy

Architectural Adaptability
in Parallel Programming

by

Lawrence Alan Crowl

Submitted in Partial Fulfillment
of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

Supervised by Thomas J. LeBlanc
Department of Computer Science

University of Rochester
Rochester, New York

May 1991

Lo

(© 1991, Lawrence Alan Crowl, Rochester, New York

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO |

TR 381

3. RECIPIENT’'S CATALOG NUMBER

4. TITLE (and Subtitle)

Architectural Adaptability in Parallel

S. TYPE OF REPORT & PERIOD COVERED

technical report

Programming

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a)

Crowl, Lawrence A.

8. CONTRACT OR GRANT NUMBER(s)
N0O0014-87-K-0548
N00014-82-K-0193

9. PERFORMING ORGANIZATION NAME AND ADORESS
Computer Science Dept.
University of Rochester
Rochester, NY, 14627, USA

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

1. CONTROLLING OFFICE NAME AND ADDRESS

DARPA

12. REPORT DATE

May 1991

1400 Wilson Blvd.
Arlington, VA 22209

13. NUMBER OF PAGES

114 paaqes

4. MONITORING AGENCY NAME & ADDRESS(i! different from Controlling Ollice)

Office of Naval Research
Information Systems

1S. SECURITY CLASS. (of thie report)

unclassified

Arlington, VA 22217

15a, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. GISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abetrect entered In Block 20, Il di{ferent from Report)

18. SUPPLEMENTARY NOTES

None.

19. KEY WORDS (Continue on reverae side if necessary and identify by Block number)

annotations; Matroshka; Natasha

control abstraction: programming lanquage; architectural independence;

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

(see reverse)

FORM
JAN 73

DD , 1473

EDITION OF ' NOV 63 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. ABSTRACT

To create a parallel program, programmers must decide what parallelism to exploit,
and choose the associated data distribution and communication. Since a typical
algorithm has much more potential parallelism than any single architecture can
effectively exploit, programmers usually express only the exploitation of parallelism
appropriate to a single machine. Unfortunately, parallel architectures vary widely.
A program that executes efficiently on one architecture may execute badly, if at all,
on another architecture. To port such a program to a new architecture, we must
rewrite the program to remove any ineffective parallelism, to introduce any
parallelism appropriate for the new machine, to re-distribute data and processing,
and to alter the form of communication.

Architectural adaptability is the ease with which programmers can tune or port a
program to a different architecture. The thesis of this dissertation is that control
abstraction is fundamental to architectural adaptability for parallel programs. With
control abstraction, we can define and use a rich variety of control constructs to
represent an algorithm'’s potential parallelism. Since control abstraction separates
the definition of a construct from its implementation, a construct may have several
different implementations, each providing different exploitations of parallelism. By
selecting an implementation for each use of a control construct wvith annotations,
we can vary the parallelism we choose to exploit without otherwise changing the
source code.

We present Matroshka, a programming model that supports architectural
adaptability in parallel programs through object-based data abstraction and closure-
based control abstraction. Using the model, we develop several working example
programs, and show that the example programs adapt well to different architectures.
We also outline a programming method based on abstraction. To show the
implementation feasibility of our approach, we describe a prototype language based
on Matroshka, describe its implementation, and compare the performance of the
prototype with existing programs.

Curriculum Vitae

Lawrence Alan Crowl was born on the 25 of July 1959 in Sacramento, California.
Since then he has lived in Kansas, Florida, New Hampshire, Alabama, California, New
Mexico, Rheinland-Pfalz (Germany), Ohio, Virginia, Colorado, and New York. His
pursuit of a doctorate at the University of Rochester caused his longest stay in any one
state!

Starting in September 1977, Lawrence attended Denison University in Granville,
Ohio. There he served as a member of the Computer Center Advisory Committee and
the Special Committee on the Future of Computer Service, and worked for the Computer
Center as a programmer. He was inducted into the Sigma Xi (Scientific Research), Pi
Mu Epsilon (Mathematics) and Sigma Pi Sigma (Physics) honoraries. He received the
Gilpatrick Award for Excellence in Mathematics, and was on the Dean’s List two years.
In May 1981, he received a Bachelor of Science Magne cum Laude in Computer Science
and Physics. His Honors Thesis was “A Terminal Oriented Master/Slave Operating
System”.

In September 1981, Lawrence started graduate school in computer science at the
Virginia Polytechnic Institute and State University in Blacksburg, Virginia. There he
worked as a graduate teaching assistant for the Compnter Science Department. He was
inducted into the Upsilon Pi Epsilon (Computer Science) honorary. In July 1983, he
received a Master of Science in Computer Science and Applications. His Master’s Thesis
was “A Macro System for English-Like Commands™.

From March 1983 through August 1985, Lawrence worked as a software engineer for
Hewlett-Packard Company in Loveland, Colorado. There he developed system software
for an integrated-circuit tester and a printed-circuit-board tester.

In September 1985, Lawrence entered the University of Rochester Computer Science
Department. He worked primarily as a research assistant, but also as teaching assis-
tant for the Problem Seminar (the graduate immigration course) and Programming
Languages.

Lawrence is a member of the Sigma Xi Scientific Research Society, the Association
for Computing Machinery, and its Special Interest Group on Programming Languages.

il

Acknowledgments

First, I would like to thank Thomas J. LeBlanc, my advisor, for his untiring efforts
in helping me separate the wheat from the chaff in this dissertation. I would also like
tc thank my committee Douglas L. Baldwin, Robert J. Fowler, Michael L. Scott, and
Edward L. Titlebaum, for their effort.

Three students deserve special recognition for their continuing aid in exploring the
ideas in this dissertation. They are Alan L. Cox, John M. Mellor-Crummey, and César A.
Quiroz.

I also thank my family for their long-distance support and encouragement.

This work was supported by the National Science Foundation under research grants
CCR-8320136 and CDA-8822724, the Office of Naval Research under research contract
N00014-87-K-0548, and the Office of Naval Research and Defense Advanced Research
Projects Agency under research contract N00014-82-K-0193. The Government has cer-
tain rights in this material.

Abstract

To create a parallel program, programmers must decide what parallelism to exploit,
and choose the associated data distribution and communication. Since a typical algo-
rithm has much more potential parallelism than any single architecture can effectively
exploit, programmers usually express only the exploitation of parallelism appropriate
to a single machine. Unfortunately, parallel architectures vary widely. A program that
executes efficiently on one architecture may execute badly, if at all, on another archi-
tecture. To port such a program to a new architecture, we must rewrite the program to
remove any ineffective parallelism, to introduce any parallelism appropriate for the new
machine, to re-distribute data and processing, and to alter the form of communication.

Architectural adaptability is the ease with which programmers can tune or port
a program to a different architecture. The thesis of this dissertation is that control
abstraction is fundamental to architectural adaptability for parallel programs. With
contro} abstraction, we can define and use a rich variety of control constructs to rep-
resent an algorithm’s potential parallelism. Since control abstraction separates the
definition of a construct from its implementation, a construct may have several different
implementations, each providing different exploitations of paralleiism. By selecting an
implementation for each use of a control construct with annotations, we can vary the
parallelism we choose to exploit without otherwise changing the source code.

We present Matroshka, a programming model that supports architectural adapt-
ability in parallel programs through object-based data abstraction and closure-based
control abstraction. Using the model, we develop several working example programs,
and show that the example programs adapt well to different architectures. We also
outline a programming method based on abstraction. To show the implementation
feasibility of our approach, we describe a prototype language based on Matroshka, de-
scribe its implementation, and compare the performance of the prototype with existing
programs.

Table of Contents

Curriculum Vitae

Acknowledgments

Abstract
List of Tables

List of Figures

1

Vi

1.1
1.2
1.3
1.4

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7

1.1
4.2
1.3

Introduction

Architectures and Programming. o oL,
Architectural Adaptability L.
Statement of Thesis,
Dissertation Overview 0 i it it it tit e

Related Work

Early Parallel Languages
Exploiting Parallelism
Distributing Data and Processing
Choosing Communication
Summary e e

Matroshka Model and Rationale

Uniform Data Abstraction
Synchronous Operation Invocation
Copy Model of Variables and Parameters
Concurrent Operation Execution
Uniform Control Abstraction
Early Reply from Invocations
Summary

Control Abstraction
Expressing Parallelism
Exploiting Parallelism
Distributing Processing
Extended Examples
Gaussian Elimination. oL oL

Programming Method

Abstract Early and Often
Use Precise Control Constructs

Experiment with Annotations

.......................

........................

Natasha Implementation

Compiler and Library Organization
Optimizing Natasha Mechanisms
Performance Evaluation

.....................

...........................

Natasha Prototype Language

6 —
6.1
6.2
6.3 Reuse Code .
6.4

7 —
7.1
7.2
7.3

8 — Conclusions
8.1 Contributions
8.2 Future Work

Bibliography

A —
Al Syntax
A.2 Types
A.3 Variables . .
A.4 Records . ..
A.5 Expressions .
A.6 Closures . . .
A.7 Object Types

.................................

.................................

.................................

a9
69
70
75
75

76

7
78
82

88
89
90

93

101
101
104
106
110
110
111
112

vit

Vil

List of Tables

3.1 Combinations of Variable Models 25
A.l Simple Tokens 102
A2 CharacterClasses o i it i 102
A3 Complex Tokens v i i e 102
A4 Reserved Identifiers oL 103
A5 Grammar e e e e e e e e 103
A.6 Operations on Inherent Objects 105
A.7 Operations on Inherent Type Objects 105
A.8 Operations on Boolean and Integer Objects 107
A.9 Operations on Character, String, and Range Objects 108
A.10 Operations on Simple Type Objects 108
A.11 Operations on Synchronization Objects 109
A.12 Operations on Synchronization Type Objects 109

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8
5.9

7.1
7.2
7.3
7.4
7.5

Al

List of Figures

Copy Model of Variables 24
Reference Model of Variables 24
Example Copying Input to Output 34
Example Printing a Range of Integers 34
Example Implementation of Forkand Join 39
Example Implementationof Forall 41
Example Annotated Quicksort 44
Gaussian Element Elimination Goal 50
Performance of First Gaussian Program 52
Performance of Distributed Gaussian 53
Sequential Gaussian Element Elimination 54
Phased Gaussian Element Elimination 55
Fully Parallel Gaussian Element Elimination 56
Performance of Phased and Fully Parallel Gaussian 57
Performance of Fully Parallel Gaussian Distributions 59
Performance of Gaussian With Data Abstraction 60
Manual Optimization of Sequential Natasha 84
Initial Performance of Parallel Natasha 85
Performance With Inner-Loop Optimization 86
Performance Without Redundant Copies 86
Performance With Final Optimizations. 87
Example Computing Factorials Recursively 114

ix

1 — Introduction

Likewtse, when a long series of identical computations is to be performed,
such as those required for the formation of numerical tables, the machine
can be brought into play so as to give several results at the same time,
which will greatly abridge the whole amount of the processes.

— General [. F. Manabrea, 1842, referring to Charles Babbage’s
Analytical Engine, the first computer.

Most current computers execute sequentially, one operation at a time. The great speed
at which these computers execute their cperations gives them their computing power.
Unfortunately, further increases in the speed of execution are becoming expensive; so
there is a practical limit on the computational power of cost-effective sequential comput-
ers. We can get more cost-effective computing power by using computers that execute
many operations at a time, in parallel. Unlike sequential computers, there are many dif-
ferent ways to organize parallel computers. Furthermore, programmers often assume one
particular organization when writing parallel programs. While the resulting programs
execute efficiently on one computer, they often execute poorly on another. Rewriting
the programs to execute efficiently on the second computer is often as difficult as start-
ing over from scratch. This dissertation describes how to write programs that take little
effort to make them execute efficiently on a wide variety of parallel computers.

1.1 Architectures and Programming

In developing a computer program, programmers have two tasks. First, they must
identify an algorithm for solving the problem; and second, they must implement that
algorithm on the computer at hand. For the past forty years, nearly all computers
have had a von Neumann architecture [Burks et al., 1946], in which operations proceed
sequentially. Programs that execute efficiently on one von Neumann computer will al-
most always execute efficiently on another. As a result of this stability in architecture,
most programmers and programming languages can safely assume a von Neumann ar-
chitecture. The assumption has become so safe that it is implicit in most programs and
programming languages. Indeed, the reliance on sequential execution is so prevalent
that the term ‘algorithm’ usually means a sequential algorithm unless explicitly stated
otherwise.

The von Neumann architecture has remained prevalent because manufacturers have
been able to increase the speed of computers by increasing the speed of their electrical
components, and by using parallelism in the implementation of the architecture. Unfor-
tunately, both of these techniques are reaching their limits. First,increasing the speed of
the basic electrical components is progressively more expensive. Second, the frequency
of conditional branches within most von Neumann programs limits the effectiveness of
parallelism in the implementation of a von Neumann architecture. We are now reaching
the limits at which we can cost-effectively provide increased computing power solely
though faster implementations of the von Neumann architecture. As computational
speeds increase, architectures that provide parallelism will be more cost effective than
the von Neumann architecture.

In contrast to sequential computers, parallel computers have a wide variety of ar-
chitectures. They may provide a single instruction stream that operates on many data
streams (SIMD), or they may provide many independent instruction and data streams
(MIMD). For example, the Iliac-IV broadcasts the same instruction to 64 processors
while each Cm* processor executes instructions independently. Existing parallel com-
puters provide from one (e.g. the Cray 1) to 65536 (e.g. the Connection Machine)
processors. Computers may provide information storage in three different ways. They
may provide storage that all processors access equally (e.g. the Sequent Balance); they
may split the storage among processors so that accessing another processor’s portion
is more expensive (e.g. the BBN Butterfly); or they may not provide any access to
another processor’s portion (e.g. the Hypercube). When processors cannot directly ac-
cess non-local storage, they must communicate with other processors for the necessary
information. Computers may communicate via high-speed inter-processor networks,
medium-speed local-area networks, and low-speed long-distance networks. Any single
difference in these characteristics leads to qualitatively different architectures, so there
are many potential architectures.

Although an algorithm may have an efficient implementation on a wide range of
architectures, each class of architecture may exploit a different subset of the parallelism
inherent in the algorithm. Unfortunately, the implementation of a parallel algorithm
on one architecture may provide little leverage in finding an efficient implementation on
another architecture. To implement an algorithm on a particular machine, we must do
three things.

Identify and Exploit Parallelism: Algorithms generally contain more potential paral-
lelism than any one machine can effectively ezploit; so we must select the subset of
potential parallelism that we wish to exploit. This subset depends on the number
of processors, the overhead associated with starting a parallel activity, and the
overhead associated with any necessary synchronization. Since these factors dif-
fer depending on the architecture, the appropriate exploitation of parallelism will
depend on the architecture. For example, the Transputer has hardware support
for quickly creating and managing parallel activities, so programs executing on
the Transputcr can efficiently manage more parallel activities than programs on
many other machines.

Distribute Data and Processing: Parallel architectures can execute more quickly when
the data a processor needs is close to the processor. For example, programs on
the BBN Butterfly can access memory local to the processor five to fifteen times
faster than memory local to another processor. When we distribute data and
computational tasks so that tasks that share data are close to the data and to
each other, the overall efficiency of the program will be greater.

Choose Communication: Communication in shared-memory multiprocessors (e.g. the
Sequent Balance) can be several orders of magnitude faster than communication
in distributed memory machines (e.g. the Hypercube). The cost of communication
affects the parallelism that programmers can exploit efficiently. Some architectures
provide several forms of communication so that programmers can exploit a wider
range of parallelism. Programmers must choose the communication mechanisms
that are appropriate to the parallelism exploited.

Because of the wide variety of parallel architectures and the many possible interleav-
ings of statement executions, implementing a parallel algorithm is a difficult problem.
There are two primary approaches to solving this problem. The first approach relies on
the programmer to express explicitly the parallelism in an algorithm and its implemen-
tation on an architecture. The second approach relies on the programming language
translator to accept non-parallel descriptions of an algorithm (sequential or declarative)
and find the appropriate parallelism for a machine. While the second approach results
in less work for the programmer, current translators produce programs that execute
slowly relative to explicitly parallel programs. We use parallel computers for the speed
advantage they provide over sequential computers. However, parallel computers have
modest potential [Snyder, 1986), at best they can improve computational speed linearly
in the number of processors. So, users are often willing to invest considerable effort
in making efficient use of parallel computers. Any language translator that introduces
much inefficiency will exclude the set of users that care most about performance —
exactly those users of parallel computers. Because of the desire for efficient execution,
this dissertation concentrates on explicitly parallel imperative languages.

1.2 Architectural Adaptability

When writing an explicitly parallel program, programmers typically limit consideration
to the parallelism in the algorithm that a given machine can effectively exploit, and
ignore any other potential parallelism. The resulting programs embed assumptions
about the effective granularity of parallelism, the distribution of processing and data,
and the cost of communication and synchronization. While this approach may result
in an efficient implementation of the algorithm under a single set of assumptions, the
program is difficult to adapt to a different set of assumptions because the distinction
between potential and exploited parallelism has been lost. All that remains in the
program is a description of the parallelism that is most appropriate for our original
assumptions about the underlying machine. When an architecture violates any of these
assumptions, the program must be restructured to avoid a potentially serious loss of
performance. This restructuring can be complex, because the underlying assumptions

are rarely explicit, and the ramifications of each assumption are difficult to discern. For
example, programs written for a shared-memory machine will communicate through
variable access without explicitly noting the resulting communication. Emulating this
shared memory access on a computer without shared memory may or may not be
effective, depending on the program. Assuming characteristics of a given machine in
the development of a parallel program will limit the range of machines for which the
program is efficient.

We might want to change the architectural assumptions in a parallel program for
two reasons:

Tuning: We may not be able to predict a priori those sources of parallelism in an
algorithm that are most appropriate for an architecture (or a particular class of
input values). Changing an incorrect exploitation of parallelism can be a complex,
ad hoc task, similar to the problem of changing data representations in a program
lacking data abstraction.

Porting: We may wish to port programs from one architecture to another and to vary
the number of processors in use. Since parallel architectures vary widely, different
implementations of the same program will usually exploit different opportunities
for parallelism. Uncovering and exploiting these opportunities can result in a
massive restructuring of the program.

Architectural adaptability is the ease with which programs can be tuned or ported to
different architectures. We can measure architectural adaptability by the extent of
source code changes necessary to adapt a program to an architecture, and the intellectual
effort required to select those changes.

A programming system provides architectural independence over a range of archi-
tectures when it automatically selects the exploitation of parallelism for a particular
architecture in that range, and the programmer makes no architecture-specific changes.
Given the difficulty of achieving true architectural independence, this dissertation re-
lies on a simple mechanism, annotations, that enables the programmer to select the
exploited parallelism without significant changes to the rest of the source program.
Changing annotations will usually suffice to adapt a program to an architecture. Where
changes to source code are necessary, we would like to minimize both the number of
changes and the effort required to make the changes.

1.3 Statement of Thesis

Achieving architectural adaptability is easier when the program separates the expression
of an algorithm from its implementation on a given machine. For instance, in explicitly
parallel imperative programs we need to specify the potential parallelism in an algo-
rithm and then separately specify its exploitation in a given implementation. With this
separation, we can specify the potential parallelism during program design, and later
choose an implementation during program debugging and tuning.

The separation of the specification of potential parallelism from its implementation
is an example of abstraction. In programming, abstraction is the process of separating

the use of something from its implementation. Programming language designers almost
necessarily use abstraction in the development and definition of their languages. While
this is an effective use of abstraction, the process of abstraction is most useful when
application programmers can continue the process in the development of their programs.
In applying abstraction to parallel programming, we can use abstractions to represent
potential parallelism, distribution and communication, and then use implementations
of those abstractions appropriate for a given machine. While any given implementation
may exploit only a small subset of the potential parallelism, the program expresses all
potential parallelism.

Explicitly parallel imperative programs use control flow constructs, such as fork,
cobegin, and parallel for, to introduce parallel execution. Since the expression of par-
allelism in these programs is fundamentally an issue of control flow, control abstraction
should aid architectural adaptability. Control abstraction is the process of separating
the use of a control construct from its implementation. In particular, control abstrac-
tion can separate the semantics of statement sequencing from the implementation of
statement sequencing.

Control abstraction aids architectural adaptability in three ways, corresponding to
our original list of implementation problems.

Identify and Exploit Parallelism: We can use control abstraction to define control con-
structs that represent an algorithm’s potential parallelism, and define several im-
plementations for those constructs that exploit different subsets of the potential.
The algorithm determines the control constructs used to represent potential paral-
lelism; the architecture determines the implementations used to exploit parallelism.

Distribute Data and Processing: We can use data abstraction to define data structures
that may be distributed, and exploit different distributions with different im-
plementations of the data abstractions. However, data distribution alone is not
enough, we must also distribute processing. Again, we can use control abstrac-
tion to define control operations that distribute processing and to define control
operations on distributed data structures that distribute the processing with the
data.

Choose Communication: We can use argument passing in procedural abstraction (a
form of control abstraction) to represent potential communication. We can then
choose different exploitations of communication by selecting the appropriate imple-
mentation of procedure invocation. Implementations include the typical machine
branch implementation and remote procedure call implemented with messages.

Control abstraction is a central part of a general solution to each implementation. We
intend to show that control abstraction is an effective means for achieving architectural
adaptability in ezxplicitly parallel imperative programs.

1.4

Dissertation Overview

A parallel programming system must provide more than just control abstraction to be
effective. To test and support the ideas presented in this dissertation, we

designed the Matroshka (Marpémxa)! parallel programming model to support
architectural adaptability in parallel programming;

designed the Natasha (Hardmwa)? prototype programming language using the Ma-
troshka model;

implemented a compiler and runtime library for Natasha;
programmed several example applications; and

executed these examples to test their effectiveness.

Chapter 2 discusses some early parallel languages, the problems they present for
architectural adaptability, and related work in solving these problems. Chapter 3 intro-
duces the Matroshka model for parallel programming, with examples using the Natasha
prototype programming language. (Appendix A provides the complete Natasha lan-
guage definition.) Chapter 4 introduces control abstraction and its application to ar-
chitectural adaptability. Chapter 5 presents several extended examples of programming
for architectural adaptability. Chapter 6 discusses a method for achieving architectural
adaptability with abstraction. Chapter 7 presents the prototype implementation of
Natasha and the optimizations that make it competitive in performance with standard
sequential languages. Finally, chapter 8 presents the conclusions.

'Matroshka (also transliterated as Matréska) are the wooden Russian dolls where the smallest nests
within the next smallest and so on. They lock somewhat like squat bowling pins and are painted to
depict Russian peasant women.

?Natasha (also transliterated as Natasa) is an instance of a Russian peasant woman.

2 — Related Work

Pereant, inquit, qui ante nos nostra direrunt.
[Confound those who have said our remarks before us.]

— Aelius Donatus, fourth century A.D.

To create a parallel program, a programmer must decide what parallelism to exploit, how
to distribute data and processing among processors, and how to communicate between
parallel tasks. This chapter first discusses early programming language support in
solving these problems and then presents several techniques that address each of these
problems in the context of architectural adaptability.

2.1 Early Parallel Languages

Early parallel programming languages were intended as tools to program a specific ar-
chitectural model rather than as a general means for specifying parallel algorithms. As
such, early languages provided separate mechanisms that represented different features
of the class of real machines for which the languages were intended. These mechanisms
reflected the parallelism, distribution and communication costs of their architectures.
For example, Concurrent Pascal [Brinch Hansen, 1975] provided cobegin ...ccand con-
struct to represent the concurrent execution of statements. Statements shared storage
at a fine grain. This reflected Concurrent Pascal’s expected used as a language for
concurrent programming on a uniprocessor. Distributed computing, in which comput-
ers share no storage but communicate by passing messages, attracted many languages.
These include PLITS [Feldman, 1979], which provided extensive facilities for handling
messages between autonomous processes, and Distributed Processes [Brinch Hansen,
1978], which provided an early form of remote procedure call. In essence, these lan-
guages presented virtual machines that closely matched real machines. The advantage
these languages provided was that the virtual machines presented by the languages were
easier to program than the real machines.

In a distributed system, communication between different processors typically costs
two orders of magnitude more than communication within a processor. Many dis-
tributed programming languages such as PLITS [Feldman, 1979} and *MOD [Cook.
1980]. make distributed objects visible within the language under the assumption that
programmers will manage visible costs more effectively than invisible costs. The result-

-1

ing programs often execute efficiently only on that architecture or architectures that can
emulate it efficiently. This issue is especially important because, unlike the von Neu-
mann architecture for sequential computers, there is no generally accepted archetype
for parallel computers. For example, programming languages based on shared memory
do not execute well on distributed systems.

2.1.1 The Multiple Mechanism Problem

When parallel and sequential mechanisms are distinct, programmers must decide to
implement a given object either as a parallel object or as a sequential object early in
program development. Because communication among distributed objects is expensive,
application programmers tend to make distributed cbjects large to minimize the inter-
actions between them and the resulting overhead. On the other hand, programmers
of libraries do not know the context in which their code will be used, so they often
choose a higher-cost, more general, parallel implementation rather than a cheaper se-
quential implementation [Greif et al., 1986]. This, in turn, inhibits use of the library by
application programmers concerned with performance. Libraries must provide general
purpose abstractions in both mechanisms to provide programmers with the incentive to
use them. Multiple mechanisms tend to discourage the specification of parallelism and
the construction of libraries.

The difference between local and remote communication costs in multiprocessors
is much lower than in distributed systems, which encourages more frequent commu-
nication within programs. Unfortunately, the appropriate binding of parallelism to
program components in such an environment is often not obvious before doing perfor-
mance experiments on completed code. For example, an algorithm for finding subgraph
isomorphisms using constraint propagation has potential parallelism in many places.
The two primary sources of parallelism are in searching the constraint tree, and in the
matrix calculations that prune the tree at each node. The coarsest parallelism is at
the tree search, so we expect it to have the least overhead. However, tree search re-
sults in speculative parallelism, so there may substantial wasted work [Costanzo et al.,
1986]. Parallelizing the matrix operations may provide better performance in spite of
the higher overhead. In multiprocessors, predicting the appropriate mechanism among
many may be difficult.

When programmers must choose parallelism early in program development, fixing an
incorrect choice or porting the program to a different architecture involves substantial
changes to the program. If a choice of a mechanism is incorrect, the programmer must
recode portions of the program and reintegrate it into the remainder of the program. In
addition, the mechanism used to implement an abstraction is often visible at the points
where the abstraction is used. Because the use of an abstraction may be distributed
throughout the program, a change in mechanism could involve rewriting much of the
program. Programmers will only make such changes under extreme circumstances.
This inhibits tuning the program to make optimal use of the parallelism available and
severely handicaps someone attempting to port the program to another architecture.
This latter problem is difficult enough so that programmers often write another program
based on the algorithm of the original program rather than port the program itself.

When language mechanisms enable programmers to bind parallelism late in program
development, choosing the granularity and location of parallelism becomes part of the
optimization effort, rather than the algorithm development effort.

2.2 Exploiting Parallelism

Recent approaches to the problem of specifying and exploiting parallelism typically rely
on a general strategy of representing much of the potential parallelism in an algorithm,
and then selecting an appropriate subset.! This strategy is a significant departure from
earlier practice, where programs described only the parallelism exploited on a given
machine, and therefore were difficult to adapt to a new architecture.

2.2.1 Parallel Function Evaluation

This dissertation focuses on explicitly parallel imperative languages because of their per-
formance advantage over functional languages. However, work on architectural adapt-
ability in functional languages can provide incites useful to explicitly parallel program-
ming. Functional programs have no side effects, so expressions may be evaluated in any
order. Therefore we can evaluate all expressions in parallel, and parallelism is implicit
in functional programs. There are two sources of parallelism in function evaluation, par-
allel evaluation of multiple arguments to a function and lazy evaluation of the value of
a function. Owing to the difficulty of automatically finding and exploiting the optimal
sources of parallelism in a functional program, several researchers have suggested the
use of annotations to specify lazy, eager, parallel, and distributed function evaluation
(Burton, 1984; Halstead, 1985; Hudak, 1986].

ParAlfl [Hudak, 1986; Hudak, 1988] is a functional language that provides annota-
tions to select eager evaluation over lazy evaluation, resulting in parallel execution, and
to map expression evaluation to processors. A mapped ezpression in ParAlfl can dynam-
ically select the processor on which it executes. An eager ezpression executes in parallel
with its surrounding context. By using a combination of eager and mapped expressions,
a programmer can select the parallelism to be exploited and map it to the underlying
architecture. The use of mapped and eager annotations does not change the meaning
of the program, which in a functional programming language does not depend on the
evaluation order. Thus, ParAlfl achieves a significant degree of architectural adapt-
ability, requiring unly changes to annotations to port a program between architectures.
ParAlfl achieves this goal only in the context of functional languages, however. Many
of the issues that we must address before we can achieve architectural adaptakility for
imperative programs do not arise in functional programs, including the expression of
potential parallelism, the effect of exploiting parallelism on program semantics, and the
relationship between explicit synchronization and parallelism.

Although pure Lisp is functional, most Lisp-based prograrming languages are im-
perative. Like ParAlfl, an imperative Lisp can exploit parallelism in function evaluation

'This idea is also effective in structuring parallelizing compilers [Quiroz, 1991].

by selecting either lazy or eager (and potentially parallel) evaluation. For example, Mul-
tilisp [Halstead, 1985) provides the function pcall for parallel argument evaluation, and
future for parallel expression evaluation. Qlisp [Goldman et al., 1990] is similar, but
provides more facilities for the conditional exploitation of parallelism. Unlike ParAlfl,
Multilisp is an imperative language with assignment. Since parallel execution may af-
fect the order of assignments, the use of pcall and future to introduce parallelism can
affect the semantics of the program. In particular, a programmer can use future only
when certain that it will not produce a race condition. Halstead advocates a combi-
nation of data abstraction with explicit synchronization and a functional programming
style to minimize the extent to which side-effects and parallelism conflict.

To the extent that only the side-effect-free subset of Multilisp is used, both pcall
and future can be thought of as annotations that select a parallel implementation
without affecting the semantics of the program. Like ParAlfl, a side-effect-free Multilisp
program can adapt easily to a new architecture with the addition or deletion of pcall
and future. However, Multilisp was not designed to be used in such a limited fashion.
A Multilisp program that uses side-effects to any significant degree cannot adapt easily
to a new architecture, since exploiting alternative parallelism in the program requires
that the programmer understand the relationship between side-effects and the intended
use of pcall or future.

2.2.2 Data Parallelism

Data parallel languages provide high-level data structures and data operations that
allow programmers to operate on large amounts of data in an SIMD fashion. The
compilers for these languages generate parallel or sequential code, as appropriate for
the target machine. Fortran 8z [Albert et al., 1988] and APL [Budd, 1984] provide
operators that act over entire arrays, which could have parallel implementations. The
Seymor language [Miller and Stout, 1989] provides prefix, broadcast, sort, and divide-
and-conquer operations, which also have parallel implementations. These languages
achieve architectural independence for one class of machine (i.e. vector or SIMD) by
providing a set of parallel operations that have efficient implementations on that class
of machine.

The Paralation model [Sabot, 1988] and the Connection Machine Lisp [Steele and
Hillis, 1986] support data parallelism through high-level control operations such as it-
eration and reduction on parallel data structures. These operations represent a limited
use of control abstraction, demonstrating that it can be used to define data parallelism.
Such operations are not a general solution to the problem of specifying parallelism
however, since parallelism is defined solely in terms of a particular data structure.

2.2.3 Fixed Control Constructs for Exploited Parallelism

Explicitly parallel languages typically provide a limited set of parallel control constructs,
such as fork, cobegin. or parallel for loops, which programmers use to represent and
exploit parallelism simultaneously. If the degree of parallelism specified using these
constructs is not appropriate for a given architecture, the resulting program is not effi-
cient. In general, the correspondence between the parallelism described in the program

10

and the parallelism exploited at run time is too restrictive in early explicitly paral-
lel languages; selecting an alternative parallelization often requires almost completely
rewriting programs.

2.2.4 Fixed Control Constructs for Potential Parallelism

Fortran 8z loosens the correspondence between potential and exploited parallelism with
the do across construct, which has both sequential and parallel implementations. Pro-
grammers use do across to specify potential parallelism, and the compiler can choose
either a sequential or parallel implementation as appropriate. Compilers on different
architectures may make different choices, thus providing a limited degree of architec-
tural independence. These choices are usually predefined by the compiler implementor;
the programmer has no mechanism to extend the set of choices<

The Par language [Coffin and Andrews, 1989; Coffin, 1989] (based on SR [Andrews
et al., 1988]) extends the concept of multiple implementations for a construct to user-
defined implementations. Par’s primary parallel control construct is the co statement,
which is a combination of cobegin and parallel for loops. The programmer may define
several implementations of co, called schedulers, which map iterations to processors
and define the order in which iterations execute. Using annotations, a programmer
can choose among alternative schedulers for co, and thereby tune a program to the
architecture at hand.

Any single control construct may not easily express all the parallelism in an algo-
rithm, however. Languages that depend on a fixed set of control constructs for paral-
lelism limit their ability to express certain algorithms easily. When the given constructs
do not easily express the parallelism in an algorithm, the programmer must either ac-
cept a loss of parallelism, or use the available constructs to express excessive parallelism,
and then remove the excess using explicit synchronization. The former approach lim-
its the potential parallelism that can be exploited, while the latter approach results in
programs that are difficult to adapt to different architectures. In the particular case of
Par, programmers must express all parallelism with co. It is tempting to create new
parallel control constructs by embedding synchronization within an implementation of
co. This approach changes the semantics of co however, and leaves a program sensitive
to the selection of implementations, violating the Par assumption that annotations do
not change the meaning of the program.

2.2.5 User-Defined Control Constructs

The problem with any approach to architectural adaptability based solely on select-
ing alternative implementations of a small fixed set of control constructs is that our
ability to describe potential parallelism is limited to compusitions of the parallelism
provided by the constructs. Chameleon [Harrison and Notkin, 1990; Alverson, 1990;
Alverson and Notkin, 1991} represents a first step towards user-defined control con-
structs. Chameleon is a set of C++ (Stroustrup, 1986] classes designed to aid in the
porting of parallel programs among shared-memory multiprocessors. It provides sched-
ulers for tasks, which are a limited form of control abstraction. Each task is a procedure
representing the smallest unit of work that may execute in parallel. Schedulers call tasks

11

via procedure pointers. Because Chameleon uses dynamic binding in the implementa-
tion of schedulers, a compiler cannot implement tasks in-line. In addition, programmers
must explicitly package the environment of the task and pass it to the scheduler. The
resulting overhead is acceptable only when tasks are used to specify the medium and
large grained parallelism appropriate to shared-memory multiprocessors.

2.3 Distributing Data and Processing

For machines that distribute storage among processors so that access to another pro-
cessor’s storage is either slower or not possible, programs execute faster when data is
co-located with the processor that uses the data. In the absence of sharing, this co-
location would not be a problem. However, programs do share data, to varying degrees.
Techniques for maintaining the sharing of data while still co-locating it with processors
include process movement, data movement, and data replication. Languages that ex-
pect to execute in environments with distributed storage usually provide mechanisms
to control the distribution of data and/or processing.

2.3.1 Static Distribution

Distributed Processes [Brinch Hansen, 1978] provided a static mapping of processes to
processors. Since, all data was local to a process, the mapping of data was implicit
in the mapping of processes. The static mapping of processes meant that any change
in machine configuration required re-mapping the processes, and in the worst case,
rewriting the program to include more processes so that it could take advantage of
additional processors.

2.3.2 Embedding a Virtual Machine

To avoid the problem of adjusting programs to every change in machine configuration,
several early distributed and parallel languages presented a means to define a program-
dependent virtual machine, and then program in terms of this virtual machine. This
virtual machine usually had a finer grain than the real machines. The programmer than
separately specifies the mapping from the virtual mackine onto the physical machine.
Several virtual processors may reside on a single physical processor, but no virtual
processor may reside on more than one physical processor. Languages taking this ap-
proach include *MOD [Cook, 1980], NIL [Strom and Yemini, 1983], Hermes {Strom
et al., 1991] and Poker [Snyder, 1984]. Poker assumes virtual processors will be small,
whereas *MOD and NIL assume they will be at least moderately sized.

2.3.3 Dynamic Distribution

Later languages provide mechanisms for dynamically determining the mapping of pro-
cessing and data to processors. This enables programs to adapt to different numbers
of processors by computing an appropriate mapping. ParAlfl provides mapped erpres-
sinns that assign the computation of a function to a specific processor. Since ParAlfl is
functional, data is implicitly mapped with expressions.

12

—_

Emerald [Jul et al., 1988] also provides means for computing an appropriate distribu-
tion. Unlike the functional ParAlfl, Emerald was intended for an evolving environment.
To adapt to 2 changing enviionment, data and processing will need to move from one
processor to ancther. Emerald provides mechanisms for explicitly moving data and
processing.

Object Movement in Emerald

Emerald is an object-based language. When invoking an operation on an object, Emer-
ald will normally send the invocation to the processor containing the object for execution
by that processor. However, Emerald also provides mechanisms to determine the lo-
cation of ohjects, move an object to a node, fix an object on a given node, unfix an
object, refix an object (an atomic unfix, move and fix). Since an Emerald object may
contain a process in addition to data, object migration subsumes both data and process
migration.

Emerald adopts a reference model of variables in which objects consist primarily of
a few references to other objects (see section 3.3). Emerald proves a uniform semantics
for all objects, local, co-located, and remote. Mc™ . . 0bjcct may mean that others
will also need to move soon. Because of the .ne-grained nature of Emerald objects,
the explicit management of every c:sject in a program would become an unacceptable
programming burden. To solve this problem, the Emerald compiler attempts to find
objects that are only referenced from /i hin o secord object, and therefore should move
with the second object [Hutchinson, 1987]. Moving several objects at a time is much
cheaper than moving them individually. In cases where the compiler cannot discover
restricted referencing, Emerald provides the notion of attached objects. Attaching an
object to another means that when the second object moves, the first will move with
it. This enables programmers to build collections of related objects that maintain their
relative locality dynamically.

Emerald also supplies two hints for moving arguments to operation invocations, call-
by-move and call-by-visit. Call-by-move indicates that the argument object should move
to the node containing the called object. Call-by-visit indicates that the argument object
should move to the node containing the called object for the duration of the call and then
move back. The caller indicates the appropriate transmission method. Call-by-move
and call-by-visit hints at the point of call are appropriate since the caller understands
the context of the call, and the movement is independent of semantics. Unfortunately,
if the caller is a general purpose abstraction, the caller does not understand the context
of the call. So, embedding the movement semantics in the source again restricts the
programmer to ad hoc abstraction.

In Emerald, objects that will not change (immutable objects). such as code or static
tables, can not only be moved, they can be replicated. Replication ena. 2s information
that is shared, but not updated, to be accessed efficiently from any node. Emerald only
requires that the abstract value of the object not change; the representation of the value
is free to change over time.

13

2.3.4 Disti bution via Data Abstraction

Data abstraction is a useful tool in parallel programming [Murtagh, 1983] as well as in
sequential programming. Recent languages rely on data abstraction to hide the distri-
bution of data and processing. With data abstraction, the implementation of a data
structure can change as the distribution needs change. For example, an array abstrac-
tion has several possible implementations. These include a contiguous representation on
a single node, a distributed representation where elements are divided among nodes, a
distributed representation where elements are associated with nodes in a modular fash-
ion, a fully replicated representation where each node contains a copy of the entire array,
and a partially replicated representation where each node duplicates only a portion of
the array.

Par

In Par [Coffin and Andrews, 1989], programmers define data abstractions for data struc-
tures that may be distributed. Later, programmers annotate abstractions to select an
implementation appropriate to the current architecture. For example, programmers use
an array abstraction, but later select a contiguous or distributed implementation of the
array. An implementation also exports a set of mapping operations. Programmers in-
voke these mapping operations when the pattern of access to a data abstraction changes.
Mapping operations allow the representation of the abstraction to change to meet new
access patterns. For example, when the program changes from read/write access to an
exclusive portion of the array to read-only access to most of the array, programmers
would insert an call to a mapping operation that changes the representation of the array
from distributed among processors to replicated across processors.

Not only is data abstraction useful for the distribution of data structures, it is also
useful for the distribution of single values [Coffin, 1990]. For example, many relaxation
algorithms have the form:

repeat
changed := false
for each element
compute new state
if new state # old state
changed := true
while changed

The straightforward parallel implementation of this algorithm distributes the elements
and state computations among processors. The problem with this implementation is
that each state computation will access the same shared “changed” variable. The re-
sulting contention wili cause poor performance for large numbers of processors. The
solution is to define a distributed boolean type. The distributed boolean type could
implement the assignment by updating a local copy of the boolean, and then when the
value is requested via the read, examine each processor’s copy and return the latest
value. Of course, we could also provide the standard single-valued implementation in

14

place of a distributed implementation. In either case, the use of the boolean variable
does not change.

In Par, programmers distribute data by building data abstractions based on dis-
tributed arrays. Programmers distribute processing with schedulers, which are dis-
tributed throughout the machine. The programmer is responsible for maintaining, via
annotations, the appropriate correspondence between data distribution and process dis-
tribution.

Chameleon

Chameleon [Harrison and Notkin, 1990; Alverson, 1990; Alverson and Notkin, 1991] is
a C++ library providing several data abstractions and their corresponding schedulers.
For example, the array representations include contiguous, replicated, and distributed.
The Chameleon library selects the appropriate implementation at runtime.

Chameleon programmers represent work in terms of chores. A chore consists of a
work procedure and a set of characteristics describing the procedure. These characteris-
tics include unit cost, for determining granularity; and parameter access type (read-only
or read-write), for managing software-caching. The scheduler works in terms of tasks,
which are a composite of chores and a preferred schedule of execution. A partitioner
procedure defines the schedule and calls the work procedure.

Chameleon improves on Par by more tightly integrating scheduling with the data
it accesses, but at the cost of considerable programmer effort in describing the chores
and tasks. Part of Chameleon’s descriptive cost arises because C++ lacks mechanisms
to represent control abstractions. Because programmers must describe loop bodies as
separate procedures, environments and parameters must be explicitly packaged, which
inhibits the wide-spread use of Chameleon data abstractions. This, in turn, means
that programmers will describe less potential parallelism within their programs, and
therefore limit the class of architectures for which the programs are effective.

2.4 Choosing Communication

Communication costs vary significantly across architectures, and the degree of paral-
lelism and the distribution of data among processors determines the need for communica-
tion. When programmers must explicitly specify communication, there are two possible
inefficiencies. First, programmers may specify communication at such a fine grain that
the communication overhead results in poor performance. Second, programmers may
underspecify communication, so that too many processors wait for work.

Most programming languages provide no help to the programmer in specifying an
appropriate balance in communication. Instead, they rely on the programmer to pro-
gram at a granularity appropriate to the class of target architectures. If we wish to
write programs that adapt to a wide range of architectures, we must provide a means
to easily insert and remove inter-processor communication.

15

2.4.1 Virtual Communication

One technique for adapting communication to the architecture is to specify virtual
communication and then package virtual communication into physical communication.
For example, Poker expects programmers to use fine-grained communication via small
messages between small virtual processors. Poker then applies compiler techniques
to combine several small messages into a single larger message. Combining messages
reduces the number of messages, which makes message overhead commensurate with
the architecture.

2.4.2 Communication via Invocation

Emerald also expects programmers to communicate at a fine grain, but via object in-
vocation rather than explicit messages. Object invocation traditionally uses procedure
implementations and Emerald takes advantage of this implementation when object re-
side on the same processor. When performing an invocation on a remote object, a pro-
cedure implementation will not work, and Emerald implements invocation via messages.
This is an instance of the general technique known as remote procedure call. Emerald
provided a significant improvement over earlier remote procedure calls by making the
semantics of remote procedure calls identical to local procedure calls. Programmers use
the same communication mechanism, the operation invocation (procedure call), at all
levels in the program. The Emerald implementation introduces communication among
processors only when necessary.

Programs communicate between referencing environments, not processes. The lit-
erature often thinks of communication as between processes, but this is primarily an
accident of early programming languages providing a referencing environment identical
to the process. When we associate communication with object invocation, we move
closer to the idea of communication between referencing environments.

2.5 Summary

Early parallel programming languages provided mechanisms that explicitly controlled
the parallelism, distribution and communication within programs. Programs written
in these languages usually executed efficiently only on the architecture for which they
were originally written. Later languages provided constructs that described potential
parallelism, rather than exploited parallelism. Then, late in program development, pro-
grammers could change the exploitation of the parallelism provided by those constructs.
Thase [2nguages were the first step in achieving architectural adaptability. Recent lan-
guages focused on the use of data abstraction in parallel programming, particularly with
respect to distribution. Data abstraction enables programmers to adapt programs to a
greater range of architectures than a fixed set of parallel constructs.

16

3 — Matroshka Model and Rationale

Erverything should be made as simple as possible, but no simpler.
— Albert Einstein

This chapter describes the Matroshka (Marpémxka) model of parallel programming and
its rationale. The model has three goals:

Transparency: The model should not hide significant architectural capabilities.

Uniformity: The model should provide uniform mechanisms for defining program el-
ements, reguardless of their eventual implementation.

Efficiency: The model's mechanisms should have efficient implementations.

The Matroshka model uses a few, carefully chosen, general mechanisms for uniformly
defining sequential and paralle] abstractions to achieve a rich programming environment.
In describing SR, Andrews et al. [1986] state “Thus a distributed programming language
necessarily contains more mechanisms than a sequential programming language.” The
Matroshka model contradicts this statement; the generality of its mechanisms results in
fewer mechanisms than commonly found in sequential languages.

The Matroska model supports data abstraction with objects, with synchronous op-
eration invocation and concurrent operation erecution. That is, operations on objects
execute synchronously with respect to their invokers, and execute concurrently with
respect to other operations on the object. Operations may reply early, which enables
an operation to continue concurrently with its invoker. Unlike most object-based pro-
gramming languages, Matroshka uses a copy model of variables and parameters. Finally,
Matroshka supports control abstraction via first-class closures.

Matroshka is not a programming language. It leaves many issues in language design
unspecified in the model, such as syntax, inheritance, static or dynamic typing, etec.
So, the model has a wide range of possible instantiations as a programming language.
To make the presentation concrete, this dissertation defines the Natasha (Hardma)
programming language. Natasha is a statically typed prototype language, intended
only to illustrate the concepts in this dissertation. As a prototype language, it does
not provide many features that are desirable in a production quality language, such as
inheritance. Appendix A rontains the Natasha language definition.

17

3.1 Uniform Data Abstraction

We may wish to use different representations for data depending on the architecture.
To change representations easily, we must abstract the data. Mechanisms for data
abstraction must provide for treating a collection of variables as a single item, and
provide a means to define operations on the collection. Mechanisms for data abstraction
include Modula-2’s modules [Wirth, 1982], Ada’s packages [U.S. DoD, 1983], and CLU’s
clusters [Liskov et al., 1977].

3.1.1 Single Data Abstraction Mechanism

Many parallel programming systems have two mechanisms for data encapsulation, one
for global and parallel abstractions and one for local and sequential abstractions. This
dual mechanism splits the programming environment into two qualitatively different
models of interaction, introducing an artificial granularity in the programmer’s specifi-
cation of parallelism. A better approach is to provide a single encapsulation mechanism
that applies uniformly to both parallel and sequential abstractions.

A language provides uniform data abstraction when all program elements, from
primitive language elements to large user abstractions, use the same data abstraction
mechanism, regardless of the intended concurrency within the elements. If a data ab-
straction mechanism is to apply uniformly to all elements, it must only provide abstrac-
tion. Additional semantics lead to multiple mechanisms because program elements may
need to differ on the other semantics.

The presence of only one abstraction mechanism does not imply only one imple-
mentation for that mechanism. If an abstraction mechanism is to apply to all program
elements, it must have implementations suitable to all element sizes and uses. Program-
mers may then choose the appropriate implementation late in program development.

3.1.2 Data Abstraction via Objects

The Matroshka model provides data abstraction with the object. Every data item within
a program is an object. Each object has a state represented by the states of its com-
ponent variables. Programmers may invoke operations that manipulate the internal
state of an object by invoking operations on component objects. The invocation of
an operation is the sole mechanism for changing the state of the object. Thus, opera-
tion invocation is the fundamental communication mechanism in the Matroshka model.
Matroshka objects are only an encapsulation mechanism.

The object model provides natural abstraction of data, from simple integers to
databases. Identical syntax and semantics for operations on such disparate objects
can still have very different implementations. For example, an integer will likely have a
single machine word representation. A database will likely have its representation split
between volatile and non-volatile storage.

Objects also provide natural units for distribution. Distributed systems and non-
uniform-memory-access multiprocessors have substantial performance differences de-
pending on whether communication occurs within a processor or between different pro-

1

cessors. Objects provide a natural destination for communication, and hence aid the
programming system in reducing communication costs.

Objects tend to reduce the referencing environment of any one piece of code. For
example, without objects programmers tend to share a common pool of variables and use
them in an unstructured way. Programmers using objects tend to collect variables into
objects and limit variable access to a small set of operations. This reduced referencing
environment originally served to reduce programming errors. In parallel programming,
a smaller referencing environment means that there are fewer potential objects with
which another object may communicate. Fewer destinations for communication means
that programmers and programming systems may more easily analyze the program for
possible race conditions and parallel optimizations.

Ia summary, objects provide a single set of syntax and semantics that enables a
wide variety of implementations for different objects, that provides a destination for
communication, and that reduces the referencing environment.

3.1.3 Objects in Natasha

Natasha programmers define object types in terms of the set of variables the object con-
tains, and the methods that implement operations on the object. Object type definitions
have the form:

type-name: object

{ var-name: .
var-name: ...
method operation-name parameter: type { ...};
method operation-name parameter: type { ...};

};

See section A.7 for more details.

3.1.4 Generic and Polymorphic Types

A programming language that relies heavily on abstraction should provide mechanisms
for generic and polymorphic definitions. This is particularly important when defining
tvpes that manipulate collections of objects. Programmers need to define operations on
the collection type that can manipulate operations on the element types. In statically
typed languages, making this capability available involves generating many operations
on the collection type based on the operations on the element type. For example,
in defining an array of integers, we also wish to define an operation on the array that
returns the reduction of the elements over any appropriate integer operation. This meta-
operation is exactly that provided by APL [Gilman and Rose, 1976]. While important
to parallel programming and architectural adaptability, generic and polymorphic type
mechanisms are generally well understood and not crucial to this dissertation. As a
result, this dissertation will not discuss them but will assume that production-quality
languages based on the Matroshka model will provide them.

Natasha provides limited support for generic types with composite names. The
compiler recognizes the generic names for certain predefined language types. The user

19

is responsible for duplicating program text for their own generic types. We use the C
preprocessor for this task. It is clumsy, but serves for the prototype.

3.1.5 Nested Object Type Definitions

For implementation expedience, Natasha does not support nested object type definition.
This decision was a mistake. It prevents an object definition from obtaining access to the
variables in any objects that may contain it. Several example programs have an unnat-
ural structure because they must pass information through global variables rather than
though variables in a known parent object. Production-quality programming languages
based on the Matroshka model should support nested object types.

3.2 Synchronous Operation Invocation

Not only must the abstraction mechanism apply uniformly to parallel and sequential
objects, the means for communicating with them must also apply uniformly. The orig-
inating object must be able to communicate without knowing how the receiving object
will handle it, and vice-versa. Several programming systems, e.g. *MOD [Cook, 1980],
allow both synchronous communication (procedures) and asynchronous communication
(messages), but usually require both sender and receiver to agree on the form, which in-
hibits changing the form late in program development. These systems have non-uniform
communication. The cost of providing complete flexibility in communication for an ob-
ject in these systems is combinatorial in the number of communication mechanisms. In
contrast, SR [Andrews et al., 1988] lets programmers mix-and-match synchronous and
asynchronous communication.

3.2.1 Implicit Waiting

Most computations communicate with the intent of receiving a reply. However, asyn-
chronous message-based systems often do not recognize the concept of a reply. Pro-
grammers must explicitly wait on a message containing the reply. However, waiting
on the arrival of a asynchronous message is itself a synchronous operation, so even
systems based on asynchronous invocation usually supply synchronous primitive op-
erations. Thus, message-based systems tend to be non-uniform. The complexity and
non-uniformity of most message-based languages has lead to a greater concentration on
synchronous, procedure-based communication in which waiting is implicit. The evo-
lution of the asynchronous, message-based ECLU [Liskov, 1979] into the synchronous,
atomic-transaction-based Argus [Liskov and Scheifler, 1983] is an example of this trend.

A system may be completely asynchronous by explicitly passing continuations as
parameters to operations. Hewitt's Actor system [Hewitt, 1977; Hewitt and Atkin-
son, 1977; Agha, 1986b; Agha, 1986a] uses this model. In Actors, reply values are not
returned to the invoker. Instead, the invoker passes a continuation as an additional
argument. The invokee sends the reply to the continuation, which is code within the
environment of the invoker. Because reply values are used heavily in most programs,

this approach requires language support for implicitly passing continuations. The con-
tinuation model provides more expressive power than is necessary for the purposes of
this dissertation.

Given these considerations, the Matroshka model supports uniform communication
with synchronous operation invocation on objects. The invoker of an operation implicitly
waits on receipt of the reply value, which may be used as an argument to another
invocation. This is the sole communication mechanism. The model does not provide
asynchronous communication directly because it has a straightforward implementation
with other concepts in the model.

As an example of synchronous operation invocation, consider the following Natasha
code fragment.

"Hello ".print![];
“World!".print!(J;

Natasha will wait for the first invocation to reply before starting the second invocation.
We can be sure that this fragment will print the string “Hello World!™ rather than
“HeWlolorl d!” or some other equally incomprehensible variant.

3.2.2 Invocation as Communication

The Matroshka model enables efficient use of multiple architectures by associating com-
munication with abstraction. Since programmers will use layers of abstractions, the
implementation can communicate across processor boundaries at any layer of abstrac-
tion. Because the binding of processor-to-processor communication to object invocation
can occur late in program development, the model allows the programmer to tune a pro-
gram to an architecture without affecting the integrity of the algorithm.

For example, consider executing a program on both a distributed, message-based
system and on a shared-memory multiprocessor. On the distributed system, object
invocation at higher levels of the program’s abstractions would be implemented by
messages across the communication network, and invocation at lower levels would be
implemented by procedure calls. Expensive message traffic is reduced by using messages
only at the highest levels of program. On the shared-memory multiproce-sor, object
invocation at all levels of abstraction would be implemented by procedure calls, except
at the lowest level were the processors communicate through reads and writes on indi-
vidual machine words. Processor communication occurs through fast shared memory
and avoids the expense of constructing messages.

Note that not all programs that execute efficiently on a shared-memory multipro-
cessor will execute efficiently on a distributed system. In particular, if a program has
a many small, communication intensive objects with no intervening layers of abstrac-
tion, the communication graph may be too fine-grained for efficient implementation on
a distributed system.

3.2.3 Implicit Reply Addressing

When using asynchronous message-based languages, programmers that wish to wait on
a reply must often pass self-references so that the receiver knows where to send the reply.

21

The original sender must then filter incoming messages in search of the reply value. To
support waiting on replies, message-based programming languages sometimes provide
complex filtering mechanisms. For example, in PLITS [Feldman, 1979] programmers
must allocate a transaction key for a conversation and then explicitly wait on the reply
under that transaction key.

If the programmer must send results as explicitly addressed communication, the
burden on the programmer is high, both for the invoker and the invokee. The destination
for the result of an operation should be implicit. In Matroshka, reply destinations are
implicit. For example, Natasha methods return values to their invoker with the reply
statement:

reply erpression;

There is no naming of the invoker in the reply statement.

3.2.4 Ports

One advantage of message passing systems is that they may be connected into rich
networks where the intermediaries are not necessarily known in advance. Passing refer-
ences to neighboring objects allows effective construction of networks. However, if the
operations must be named directly, each sender in a network must know the name of
the operation of the recipient, which requires the sender and receiver to agree on an
operation name a priori. A priori agreement on names implies that programmers may
have to place in the communication path many intermediary objects whose sole purpose
is to translate operation names. See [Scott, 1987] for further discussion. Similar prob-
lems arise with static typing of message recipients. Network construction under these
circumstances will be an ad hoc task.

The Matroshka model provides communication independence with ports. A port is
a first-class language entity binding an operation to an object reference. Applying an
argument object to a port invokes the corresponding operation. The user of a port may
need to know the type of the argument and the type of the result, but does not need to
know the operation name or the type of the port’s object.

In Natasha, ports are typed by the type of their arguments and results. For exam-
ple, the type of port accepting an integer and returning a boolean is port‘integer
boolean’. We specify a port with the ‘.’ primitive. Given a variable foo, with the op-
eration bar, the expression foo.bar returns a port with typed by bar’s parameter and
result types. The type of foo is not part of the port’s type. We then invoke the opera-
tion corresponding to the port with the ‘!’ primitive. For example, foo.bar!3 invokes
the bar operation on the object foo with the parameter 3. The ¢.” and ‘!’ primitives
have equal precedence and bind left-to-right. The result of the expression is the reply
value of the operation. Natasha may evaluate the components of the expression in any
order, but will evaluate them sequentially.!

Ports enable programmers to connect objects into rich networks, where the exact
tvpe of objects is not known in advance, even in the context of statically typed languages.

'We chose this approach for implementation expedience and the lack of a strong reason to do
otherwise.

22

Ports also enable programmers to build libraries of control abstractions with fewer type
dependences.

3.2.5 Single Argument and Result

Control abstractions will often need to delay the invocation of an operation, or apply
an operation to many objects. In addition, control abstractions may need to combine
the results of several computations. To describe general-purpose abstractions to that
manipulate other operations, an intermediary must be able to handle the arguments and
results of operations as single units. Message based systems naturally provide this capa-
bility by referring to messages as a whole. RPC based systems generally do not provide
a mechanism that enables the programmer to refer to the set of procedure arguments.
(Suitable changes would enable RPC systems to refer to the set of arguments.)

The Matroshka model simplifies programming of control abstractions by allowing
exactly one parameter and one result for each operation. This means that control
abstractions need only handle one argument and result combination. Passing a record
as the argument achieves the effect of multiple parameters. If a language based on the
Matroshka model provides record constructors (e.g. Mesa [Xerox, 1984]), this approach
can be as notationally concise a< a list of parameters. Those operations that do not need
an argument, or have no u- ‘jul result, accept or return an empty record. For example,
in the Natasha stateiner

"Hello World!".print![];

the expressi,u ‘{1’ constructs an empty record. {We name the type of empty records
with the identifier empty.) The statement

range.new![from: 1; to: 100;];

constructs a record consisting of two components and passes it to the new operation on
the range object.

3.3 Copy Model of Variables and Parameters

Imperative languages present two models of variables and parameters. In the conven-
tional model (e.g. Fortran and the Algol family of languages), variables contain values.
We call this the copy model. Two distinct variables cannot refer to the same storage.
Figure 3.1 illustrates the relationship between objects and variables in the copy model.
Note that the two bounds variables contain different objects. Changing the lower vari-
able in one object will not affect the value in the other. In the reference model, variables
refer to objects (e.g. CLU [Liskov et al., 1977] and Smalltalk [Goldberg and Robson,
1983]). Figure 3.2 illustrates the relationship between objects and variables in the ref-
erence model. Two distinct variables may refer to the same object, or storage. That is,
each variable is a pointer to another object. For example, the two bounds variables refer
to the same object, so changes to the lower variable is visible from the objects referred
to by both procO and proci. The reference model introduces an “infinite regression”
in its pattern of objects being composed of references to other objects. When does one

23

procO: |[bounds: jlower: 2|| procl: jbounds: |[lower: 2
upper: S upper: 5
offset: O offset: 1
stride: 2 stride: 2

Figure 3.1: Copy Model of Variables

procO: e
procl: e

stride:

b ds:
/ o:‘fnslets::
\

bounds:
offset:
stride:

Figure 3.2: Reference Model of Variables

get through the references to the real data? Under the reference model, there exists a
canonical object representing each primitive value, such as the integer 3. These objects
are immutable, meaning that no operation will change their value, so the implemen-
tation is free to copy their representations without actually referring to the canonical
object.? The reference model can directly represent non-hierarchical, or cyclic, data
structures. (On the other hand, the copy model requires the introduction of a separate
pointer variable to represent non-hierarchical structures.)

Most explicitly parallel imperative languages use the reference model for concurrent
abstractions, but use the copy model for parameters and local variables. The desire for
a uniform encapsulation mechanism implies that a parallel language must choose one
model and stick with it. The one model must subsume variables for parallel abstrac-
tions, parameters, and variables for sequential abstractions (usually local to a parallel
abstraction). Table 3.1 lists combinations provided by some languages. For example,
SR uses a reference model for its resources (which are distributable objects), but uses
the copy model for local variables and parameters. Current systems with uniform encap-
sulation (e.g. Actors [Agha, 1986b] and Emerald [Black et al., 1986a]) use the reference
model. In contrast, Matroshka uses the copy model.

“Note that under some systems, such as Emerald, the representation of an immutable object may
change over time, so long as its abstract value does not. The change in representation enables program-
mers to adapt to changes in access patterns.

*The nesting of matroshka dolls is the inspiration for the name of the Matroshka model.

24

| Actors Ada Argus CSP Emerald Matroshka SR

parallel abstractions | refer refer refer refer refer copy refer
sequential/local refer copy refer copy refer copy copy
parameters refer copy copy copy refer copy copy

Table 3.1: Combinations of Variable Models

The reference model has some attractive properties, such as fewer naming mecha-
nisms more concise sharing, and a more straightforward implementation of polymorphic
types. However, the copy model has several advantages over the reference model in the
context of parallel and distributed programming. These advantages include:

e controlled aliasing, which aids the exploitation of parallelism.

¢ reduced object contention, because each operation receives a separate copy of its
arguments.

e reduced interprocessor communication, because arguments to an operation are
copied to the processor executing the operation rather than remaining remote.

e more parameter implementations (e.g. copy on write), which provides more op-
portunities for optimizing parameter passing.

¢ more efficient storage management, because lifetime can be associated with scope.

Real programs must deal with both values and references, so the choice of the variable
model in a language represents a bias, and not an absolute choice. The bias of the copy
model is more appropriate for parallel programming.

3.3.1 Controlled Aliasing

The reference mcdel naturally provides for extensive aliasing among objects. It is not
generally possible to determine a priori when two variables will refer to the same object.
The resuit is that the programmer and language system must assume that the variables
may refer to the same object (until proven otherwise). A potential shared reference
requires either that the programmer and system not attempt to operate on the two
variables concurrently, or that the object explicitly control asynchronous accesses to
itself. Improperly managing the aliasing will introduce obscure and unexpected side
effects that are difficult to debug. In addition, aliasing inhibits dependency detection.
This inhibits the detection and exploitation of parallelism by both programmers and
compilers.

In contrast, the copy model ensures that each variable refers to a different object.
Thus the programmer and the compiler are free to operate on two different variables
concurrently. The copy model allows compilers to parallelize sequential code effectively.?

*Though we do not depend on sophisticated compilers for architectural adaptability, we do wish to
exclude their use.

The current research effort in parallelizing sequential programs [Polychronopoulos, 1988;
Allen et al., 1987; Sarkar, 1990; Wolfe, 1989], may aid in further parallelizing parallel
programs if the parallel program adopts a copy model of variables, though there is
considerable research remaining {Sarkar and Hennessy, 1986]. This approach is likely to
complement the coarser-grained parallelism that programmers provide.

3.3.2 Reduced Object Contention

In multiprocessor systems, mutable (i.e. value changing) objects are obvious sources of
possible contention. However, many objects may be accessed in phases, where for long
periods of time the program is interested in an object’s value and not in tracking its
changes in state. For example, in Gaussian elimination each row changes state until
it becomes the pivot row, at which point further reductions need only the value of the
row. To reduce contention in the reference model, the programmer has two options: to
make the rows immutable or to copy the pivot row explicitly.

When making the rows immutable, the compiler is free to copy each argument
row to the local node. Unfortunately, this involves increased dynamic allocation and
deallocation of row objects in the normal maintenance of the matrix. Immutable rows
cannot be updated in-place. The new value of the row must be computed in new storage.
This is not the case with the copy model because objects may be modified in place.

An explicit copy would also increase the amount of dynamic allocation and deal-
location within the system. In addition, this explicit copy requires the programmer
to provide additional code that will be suboptimal in the case where the row is being
passed to another row on the same node. The copy approach represents the copy model,
but with higher run-time and programmer costs. Implicit copy under the copy model
often requires less run-time support, and hence costs less.

3.3.3 Reduced Interprocessor Communication

The reference model implies heavy communication between machines as operations tra-
verse back and forth across machine boundaries to reach the objects referenced by the
parameters. This potential inefficiency on distributed systems is such that Argus, which
has an internal reference model based on CLU, uses an external copy model. On the
other hand, the Emerald system [Black et al., 1986b] uses the reference model over a
local area network. Emerald mitigates the cost of remote arguments by moving pa-
rameter objects, and the objects they refer to, from the calling machine to the called
machine. This approach may limit performance if there is contention for the argument
object. In contrast. the copy model moves all necessary information at the point of call.
Communication occurs exactly twice, once sending the parameters, and once sending
the results.

3.3.4 More Parameter Implementations

Parameters passed “by value™ may be implemented by copying the argument or by pass-
ing a pointer to the argument (assuming the operation does not change the argument.)
In contrast, parameters passed “by reference” as other than pointers require coherency

26

protocols. Thus “by valv ™ parameters are more amenable to optimization than “by
reference” parameters.

This implementation flexibility is important because multiprocessors have a high
degree of sharing and complicated mechanisms for sharing, and the point at which it
is more efficient to pass arguments by pointer or by copy changes more often than in
distributed systems. For instance, the BBN Butterfly can implement copy parameters
several ways, including register transmission, local memory copy, remote memory copy,
reference (assuming no one modifies the argument), and processor-to-processor mes-
sages. Small objects are almost always more efficiently passed by copy. Medium-sized
objects are most efficiently passed by pointer when the target is on the same node, and
by copy when the target is on a different node. For large objects that are accessed
infrequently, passing the objects by pointer is more efficient. For large objects that are
accessed frequently, passing the objects by copy is more efficient (or by moving them,
as in Emerald).

Compilers may provide a copy implementation of a “by reference” parameter when
the arguament is immutable, or when the programmer makes an explicit copy at the
point of call. These constraints are hard to meet, so the reference model effectively
discourages “by value” parameters. Hence, the reference model provides less flexibility
in implementing parameter passing in comparison to the copy model. These limitations
become important when porting programs among different multiprocessors.

3.3.5 Efficient Storage Management

Under the reference model, references to an object may spread freely. Because the exis-
tence of reference to an object usually implies the existence of the object, it is generally
not possible to determine the lifetime of an object statically. The indeterminate life-
time of cbjects implies dynamic heap allocation and system-wide garbage collection. To
collect garbage, the system must examine the entire set of references of the system to
insure that no references to an object exist before deleting the object. This is possible
on multiprocessors, hut on large or widely distributed systems, the number of possible
locations for a reference is too large to be effectively searched. This issue is important
because institutions invest in parallel programming for speed. Institutions are often
willing to purchase performance with engineering effort. The reference model inhibits
performance. On the other hand, the variables under the copy model contain objects.
This enables compilers to determine of the lifetime of every object statically. Because
the lifetime of the variable containing it is known, more efficient storage management
is possible.

3.3.6 The Object as a Reference Parameter

One criticism of a strict copy model of parameters in algorithmic languages, such as
C [Kernighan and Ritchie, 1978], is that they do not allow changing the argument (as
distinct from the parameter). Programmers must pass explicit references to change data.
This criticism is less valid in object-based systems because the object being operated
on is implicitly passed by reference. For example, the implicit reference to an object

27

means that operations on large tables need only pass indexing values as parameters and
may pass the table its2lf as the object being operated on.

3.3.7 Explicit Reference Variables

The Matroshka model acopts the copy model of variables and parameters. Variables
contain objects, they do not refer to objects. This means that operation arguments
are objects, not object references. Because a strict copy model of computation can
only represent hierarchical structures and not graph structures, the Matroshka model
provides an explicit object reference capability, i.e. pointers. Reference variables must
be dereferenced explicitly. The type of a reference depends on the type of the referent.
The Matroshka model is biased towards copies rather than references.

3.3.8 Variables, Parameters, and References in Natasha

Under the Matroshka model, variables serve to capture objects for later reference. While
variables contain objects, a variable name refers to an object. The variable itself contains
an object, but the name refers to the object. More specifically, a variable name is a
literal value for a reference to the corresponding object. Because of the copy model
of variables, two different simple variables names must refer to two different objects.
In Natasha, all variable declarations have an initializing expression, which implicitly
defines the type of the variable.
Variable declarations have the form:

variable-name : expression ;
For example,
letters: 26,

defines the variable ‘letters’ with the initial value ‘26’, which is an integer, so the
variable’s type is integer.

Parameters have no initializing value, so they are declared with their type instead
of their initial value. For example, a boolean parameter would have the following
definition:

invert: boolean

where boolean is the variable name of the type object.

Natasha makes a distinction between l-values and r-values. Natasha expects refer-
ences to appear as the left operand of the ‘.’ primitive, and expects values to appear
as the operand of the ‘!’ primitive. When a value appears as the left operand of *.’,
Natasha constructs a reference to the object. When a variable name appears on the
right of the ‘¥’ primitive, Natasha invokes the copy operation on the corresponding
variable to obtain it's value. For example, the expression foo.op!bar is equivalent
to the expression foo.op!(bar.copy![]). (The postfix ‘@’ operator is equivalent to
.copy![]).

28

For the most part, the l-value/r-value interpretation is intuitive. The exception
is array indexing. The result of array indexing is the reference we want. We do not
want Natasha to construct a reference to the reference. We indicate this with the *,’
primitive, which suppresses reference creation. For example, the statement

A#i, .print!{];
prints the i'th element of A. It is equivalent to the statements

A#(iQ@),.print![J;
A.select!(i.copy![]),.print![];

Likewise, when retrieving an array element, the select operation returns a reference,
which we want to dereference to obtain the value. We do so explicitly with the copy
operation. The following statements achieve the desired effect, and are semantically
equivalent.

b := (A%i,Q);
b := (A#(iQ),Q);
b.assign!(A.select!(i.copy![]),.copy!d);

Note that expressions bind left-to-right, so the parenthesis around the expression on the
right-hand side of the assignment are necessary.

3.4 Concurrent Operation Execution

Architectural adaptability depends on having much potential parallelism available, and
exploiting it as appropriate. So, a parallel programming model should not interfere with
the programmer’s ability to express parallelism.

3.4.1 No Implicit Synchronization

Shared-memory multiprocessors support concurrent operations on a single object. To
fully exploit the hardware model, the programming model must allow multiple opera-
tions to execute concurrently within a single object. Programming systems for shared-
memory multiprocessors that do not support concurrent operations violate Parnas’s
concept of transparency [Parnas and Siewiorek, 1975]. This multiple active invocation
capability is used to good advantage in the implementation of concurrently accessible
data structures, e.g. [Ellis, 1982; Ellis, 1985]. In addition, Bukys [1986] shows that the
system must be written to permit as much parallelism as possible. Otherwise, the ap-
plications will serialize on access to critical system resources. This conclusion may seem
obvious, but some things, such as the memory allocator in the Uniform System [BBN,
1985c¢] seem non-critical in development but turn out to be critical for later applications.
A language that forced serial operations would prevent replacing the memory allocator
with a more parallel version. A single active invocation language forces serialization on
system objects.

Any limitation on the potential concurrency within the encapsulation mechanism
will inagnify itself at each level of abstraction. Systems that place a heavy price on

29

abstraction mechanisms encourage programmers to avoid them, resulting in highly un-
structured, unmaintainable programs. To prevent unnecessary synchronization, the
Matroshka medel provides concurrent operation ezecution within a single object. Thus,
while invocations are synchronous with respect to their invokers, they are asynchronous
with respect to other invocations on the object. The model itself does not supply
synchronization. If the programmer needs to synchronize invocations, the programmer
must explicitly program such synchronization using language or implementation defined
object types.

3.4.2 Implicit Dispatching

Several programming models allow concurrent operations within an object, but only
after explicit dispatching. In explicit dispatching, the receiver explicitly indicates when
the processing of a request begins. This explicit dispatching introduces a weak form of
serialization in that the resources devoted to dispatching processes are limited. This seri-
alization for dispatching limits the amount of potential parallelism, increases the latency
of operations, and often introduces unnecessary synchronization costs. Often, object se-
mantics fall naturally towards implicit dispatching, so explicit dispatching would require
excess programmer effort. Under implicit dispatching, the request itself dispatches the
operation for execution.

Implicit dispatching allows better code generation because the synchronization will
be explicit in the code. There is no need to constantly use implicit general-purpose
queueing mechanisms, as happens with Ada [U. S. DoD, 1983]. This allows the system to
compile in-line those operations with minimal synchronization requirements and known
implementations. For example, an object for gathering usage statistics could do bin
selection in-line without synchronization and then atomically increment the count in
that bin. Synchronization is delayed until updating the bin count, which may be done
with a simple machine instruction.

Matroshka implicitly dispatches operations for execution as soon as they are invoked.
Any synchronization with other threads is provided by the programmer using object-
specific synchronization mechanisms.

3.4.3 Synchironization in Natasha

Matroshka presents no mechanism for synchronization other than that implicit in an
operation invocation waiting for the reply. We assume that any languages based on
our model will provide some primitive synchronization mechanism(s), like atomic mem-
ory accesses, test-and-set, or higher-level synchronization primitives. Natasha provides
three synchronization primitives, counting semaphores, condition variables as in Mesa
[Lampson and Redell, 1980), and concurrent-read-exclusive-write (crew) locks.

3.5 Uniform Control Abstraction

Much like data abstraction. which hides the implementation of an abstract data type
from users of the type, control abstraction hides the exact sequencing of operations

30

from the user of the control construct. In parallel programming, control abstraction
includes the partial order of execution. Most current imperative parallel languages lack
facilities for defining control abstractions. Hilfinger [1982] provides a short history of
major abstraction mechanisms in programming languages, from procedure and variable
abstraction in Fortran, through data structure abstraction in Algol68 and Pascal, to data
type abstraction in Alphard, CLU, and Euclid. However, Hilfinger does not mention
control abstraction. Significant mechanisms for control abstraction are present in both
Lisp and Smalltalk. In these languages, control abstraction is present to enhance the
expressiveness of the language. In parallel languages, control abstraction is even more
important because the flexibility of control more directly affects performance.

When the semantics of a construct admit either a parallel or a sequential implemen-
tation, the user of the construct need not know which implementation is used during
execution. The program will execute correctly whichever implementation is used. In
general, a control construct defined using control abstraction may have several different
implementations, each of which exploits different sources of parallelism. Programmers
can choose appropriate exploitations of parallelism for a specific use of a construct on a
given architecture by selecting among the implementations. The definition of a control
construct represents potential parallelism; an implementation of the construct defines
the exploited parallelism. Using annotations, we can easily select implementations with-
out changing the program and thereby achieve architectural adaptability.

The appropriate parallelization of control is generally dependent on user data struc-
tures, For example, parallel programs may need to distribute the work on a list. Since
data structures are user-defined, control constructs that operation on them must also be
user-defined. For example, a programmer must be able to define a construct for parallel
iteration over a list, in addition to primitive control structures. To define general-
purpose control constructs, programmers must be able to reference code, as well as
data, indirectly. Since the determination of sequential or parallel execution of these
new control constructs is architecture-dependent, programmers must be able to change
their implementations late in program development. This late binding implies that
control constructs apply uniformly to parallel control as well as to sequential control.
The issue of programmable control abstractions is not unique to parallel systems, it is
common to programming in general.

The need for defining control abstractions is greater in parallel languages than in se-
quential languages, because otherwise each programmer must build ad hoc mechanisms
for creating parallelism. Ad hoc creation of parallelism increases the cost of developing
highly parallel programs and markedly increases the cost of changing the method of
parallelism, which in turn inhibits the specification of extensive parallelism and espe-
cially data parallelism. For instance, without a mechanism for control abstraction, users
cannot define general purpose control constructs, such as a parallel for-loop, without
explicitly collecting references to the relevant portion of the environment.

With uniform control, it is feasible to provide libraries with many different imple-
mentations of control constructs. For instance, a library could provide both parallel
and sequential implementations of a tree traversal construct. Programmers may then
choose the appropriate implementation late in program development.

The Matroshka model provides three basic control mechanisms: expressions based on

31

operation invocation, the sequential execution of expression statements, and a reference
to a statement sequence within a referencing environment (a closure). These mech-
anisms enable programmers to define and implement control abstractions. Previous
sections discussed expression evaluation. We assume the reader understands sequential
statement execution and will not discuss it further. The following subsections discuss
closures and their implications.

3.5.1 Closures

Control constructs manipulate units of work. For instance, the body of a for-loop is
the unit of work passed to the for-loop construct. In the implementation of a control
construct, we must be able to handle the work as a single item, without reference to
the environment in which the work was defined. However, the work itself needs access
to the environment in which it was defined. For example, the body of a for-loop needs
access to the variables in its context, but the implementation of the for-loop does not.
The local variables of the procedure in which the loop is embedded provide the context
for the loop body. A nested procedure is another instance of work within a context.

Work-within-a-context has limited use when it only appears in language-defined
control constructs. A limited facility for work-within-a-context is the procedure pa-
rameters in Pascal [Jensen and Wirth, 1975). Since Pascal procedures may be nested,
programmers can wrap the work in a procedure nested within the appropriate context.
Pascal has no procedure variables, so programmers are limited in their ability to define
control constructs. In addition, nested procedures are cumbersome and programmers
tend not to use them. Modula-2 [Wirth, 1982] and C [Kernighan and Ritchie, 1978]
provide procedure variables, but restrict their context to the global scope, their use
in defining control constructs. Any restrictions on the assignment and scope of work-
within-a-context limits its use in abstracting control.

The power of work-within-a-context really only becomes apparent when the handle
on work is a first-class programming entity that may be defined within any referencing
environment and manipulated as any other data. Lisp's lambda [Steele, 1984] and
Smalltalk’s blocks [Goldberg and Robson, 1983] provide a means for forming closures at
any point in the program, assigning them to variables, passing them to other portions of
the program, and executing them from any other portion of the program. Closures are
similar to passing nested procedures in Pascal, but with the added power of assignment
and the notational convenience of being defined in-line.

Matroshka uses closures to support control abstraction. These closures may accept a
parameter, which enables the control construct to communicate with the body of work.
Natasha represents closures with the notation

closure parameter: type { ...}

When che parameter specification is absent, Natasha infers empty as the parameter
type.

32

3.5.2 Activations as Objects

An operation in execution has an activation record. In Matroshka, this activation record
is itself an object. So, this activation object may also respond to operations. Matroshka
represents closures as anonymous operations on activation objects. As such, closures
are implicitly an object reference and operation pair, and the specification for a closure
yields a port in execution. That is, the run-time value of a closure specification is a
port. This port is exactly the same mechanism introduced earlier (in section 3.2.4),
and may be passed outside the enclosing scope to be executed by other objects. The
activation provides the non-local referencing environment of the closure, so closures
maintain access to the variables defined within the scope of the closure.’

3.5.3 Conditional Execution

Once a language supports closures as first-class entities, the language need supply only
sequence, closure, and procedure invocation as the primitive control mechanisms. Con-
ditional and repetitive execution become user-defined operations, outside the scope of
the core language definition. For example, in Smalltalk, the objects of the boolean type
have an if method (operation, procedure} that accepts a closure to execute if the object
is true. With closures, languages can rely on control abstraction and need not define
special syntax for conditional and iterative execution.

Natasha provides conditional and iterative execution through passing closures to
pre-defined objects. For example, boolean objects (with values true or false) provide
an ‘if’ operation that accepts a port® and invokes the corresponding operation if the
boolean value is true. Otherwise, it does not invoke the operation. For example,

(current > maximum) .if! closure { maximum := current; };

is the classic algorithm for keeping track of a maximum value. The expression (current
> maximum) returns a boolean object, which executes its if operation and invokes the
closure only if the object is true. The statement maximum := current; executes only
if the closure is invoked. The type of the closure is port‘empty empty’. Natasha
provides several other predefined control constructs and encourages programmers to
define more. For example, figure 3.3 shows how use the while operation to copy the
input stream to the output stream. Control constructs may provide arguments to the
closures they invoke. For example, the predefined range type provides iteration over an
integral range. A range object consists of an integral lower bound and an upper bound.
The object’s sequfor operation accept a port (usually a closure), and for each value in
its range, applies the value to the port. Figure 3.4 shows how to use range and sequfor
to print the integers from 8 through 32, inclusive.

[n an imperative parallel language that supports closures, we can define a parallel-
for-loop construct that accepts a range of integers and a closure to execute for each

*The existence of the environment is identical to the existence of the object representing the environ-
ment. Any mechanisms for determining the existence of a normal data object also apply to environments.

®The port is usually, but not always, a closure. The if operation cannot distinguish between a port
derived from a closure and one derived from an operation on an object. See section 3.5.2.

33

input: endfile; ;; a character variable for input
boolean.while! ;; a while loop
[cond: closure ;; compute locp condition

{ input.read!'{]; ;; read input character

reply input “= endfile; ;; while input is not end of file

) H

body: closure ;3 the body for the while loop

{ input.print![J; ;; write character to output

};

1;

Figure 3.3: Example Copying Input to Output

range.new![from: 8; to: 32;] ;; create a new range object

.sequfor! ;; do a sequential for loop

closure i: integer ;3 a closure accepting an integer

{ i.print!'3; ;3 print the integer, width >= 3
newline.print![]; ;; on a separate line

};

Figure 3.4: Example Printing a Range of Integers

integer within the range. We can define the semantics of the construct such that the
only guarantees on the ordering of iterations are that no iteration will start before the
construct starts and that iterations will complete before the construct completes. We
call this the forall construct. This programmer defined construct makes weak guaran-
tees on the concurrency and synchronization between iterations. Given this construct,
we can easily provide both a sequential implementation (like the for-loop in sequential
languages) and a parallel implementation that executes all iterations in parallel. Indeed,
there are many more implementations of this construct. When programmers can choose
the construct in the design of their program, they can select the most appropriate im-
plementation of the construct for their architecture at compile time without affecting
the semantics of the program. For example, on a uniprocessor they would choose a
sequential implementation and on a multiprocessor they would choose a parallel imple-
mentation.

3.6 Early Reply from Invocations

Many abstractions can reply to their clients long before all the associated computations
are complete. A mechanism for processing an operation asynchronously to the invoker

34

reduces the non-essential synchronization between processes. Allowing the programmer
of an object to minimize synchronization with the external world increases the potential
concurrency within a program. The use of asynchronous processing must be transparent
to the invoker, otherwise programmers will tend to avoid it.

The Matroshka programming model provides for asynchronous processing between
a server and its clients with an early reply from operation invocation. After the reply,
the operation may continue processing for an arbitrary time. Early reply maintains the
local state of the operation after reply, but without necessarily introducing concurrent
access to activation variables. Matroshka's early reply dissolves the binding between
operation reply and operation termination prevalent in current imperative languages.
The invoker waits for a reply, but does not wait for termination of the operation. Since
the invoker may continue after receiving the reply, this early reply provides a source
of parallelism. Indeed, early reply is the sole source of parallelism provided by the Ma-
troshka model. It is a sufficient mechanism for implementing other forms of parallelism,
such as asynchronous invocation. The use of early reply is transparent to the invoker,
allowing the implementation of an object to change according to the system’s need for
concurrency. This mechanism is not new [Andrews et al., 1988; Liskov et al., 1936;
Scott, 1987], but its expressive power does not appear to be widely recognized.

3.6.1 Early Reply in Natasha

We denote the value-returning reply statement with the keyword reply preceding the
expression. For example,

reply 8;
Each method or closure may have (and execute) only one reply. When the reply is
not present, Natasha infers a reply with an empty record as the last statement of the
method.
3.6.2 Noting the Partial Order of Execution

The presence of an early reply in a method definition specifies a partial order of execu-
tion, which admits parallelism. For example, given the method definition,

method bigger par: integer
{ 81; ...; 8i; Teply par>8; 3,; ...; $p; };

the statements invoking the corresponding operation
.- $z; obj.bigger!(a+4); s,;

result in the following partial order of execution:

.— 3, — eval (a+4) — s; — ... —~ s, — eval par>8

The statements s, ...s, may execute in parallel with statement s, and its successors.

An informal description of the partial execution order associated with a control con-
struct can sometimes get involved. To state precisely and concisely the partial execution
order defined by a construct, we introduce the following notation. This notation is not
part of Matroshka, nor of Natasha. We use the notation in the following chapters.

Two events in the execution of an operation (or closure) are significant, its invocation
and its reply. In describing the partial order provided by a control construct, we specify
the partial order among these events using a set of rules. These rules do not implement
the construct or define complete semantics, they merely state the temporal relationships.
We use | operation to signify the invocation of operation, | operation to signify its
reply, and — to signify that the implementation of the operation must ensure that
the event on the left side precedes that on the right side. We also specify universally
quantified variables in brackets after the rule. Since the invocation of an operation
(| operation) must necessarily precede its reply (T operation), we omit such rules.

For example, the sequential for-loop operation sequfor on a range of integers rng
from lower to upper has the following control semantics:

| rng.sequfor!work — | work!lower
[work!i — | work!(i+ 1) [i : lower < i< upper]
| work!upper — T rng.sequfor!work

These rules, respectively, are: the first iteration starts after the sequfor starts; the

current iteration replies before the next one starts; and the last iteration replies before

sequfor replies. This set of partial orders is actually a total order — no parallelism is
e T

possible.

3.7 Summary

The Matroshka model supports uniform data abstraction via objects and uniform control
abstraction via closures, which enables programmers to choose data or control abstrac-
tions early in program development, while choosing their implementations late.

Unless explicitly synchronized, object operations execute concurrently and may reply
early, which enables the invoker and the operation to execute concurrently. Concurrent
operation execution and early reply enable programmers to represent extensive paral-
lelism among and between objects.

Matroshka provides communication via synchronous operation invocation. This,
coupled with a copy model of variables and parameters, enables communication to scale
with abstraction. Uniform abstraction and scalable communication enable the pro-
grammer and compiler to exploit parallelism at many levels within a program. Because
parallelism may be exploited at many levels, and be rebound among these levels easily,
programs can execute efficiently on many different architectures.

"Unless, of course, work replies early. These early replies are independent of the control construct,
which can only order invoke and reply events.

36

4 — Control Abstraction

Any problem in computer science can be solved
with another level of indirection.

This chapter introduces the use of control abstraction in paraliel programming. We show
how to build new control constructs, which improves our ability to express parallelism,
how to provide multiple implementations for control constructs, which improves our
ability to exploit parallelism, and how to use control abstraction to distribute processing.
Control constructs represent what we can do, their implementations represent what we
choose to do.

4.1 Expressing Parallelism

Given the importance of control flow in parallel programming and the multitude of
constructs proposed, it seems premature to base a language on a small, fixed set of
control constructs. In addition, if we are to encourage programmers to specify all
potential parallelism, we must make it easy and natural to do so; no small set of control
constructs will suffice. We require a mechanism to create new control constructs that
precisely express the parallelism in an algorithm. Control abstraction provides us with
the necessary flexibility and extensibility.

In this section we show how to use our mechanisms for control abstraction to build
well-known parallel programming constructs. The techniques we use generalize to im-
plementing other control constructs.

4.1.1 Fork and Join

In our first example, we use closures and early reply to implement a fork-and-join control
mechanism similar to that provided in Mesa [Lampson and Redell, 1980]. The fork
operation starts the computation of a value, which the join operation later retrieves.
This fork-and-join is similar to a Multilisp future, except that programmers must request
values explicitly with join.! Its declaration and semantics are:

'Our sample definition is somewhat restrictive in that the closure argument may only return integers.
We could make our definition more general using some form of generic type facility; doing so is beyond
the scope of this dissertation.

37

forkjoin: object

{ method fork work: port‘empty integer’ replies empty ;
method join replies integer ;

+

mailbox: forkjoin.new![J;

| mailbox.fork!work — | work
| work —] mailbox.join![]

These rules state that fork invokes work, and that join waits for the reply from work
before replying. The user must invoke the join after the fork replies:

Tmail»~x.fcrk!work -+ | mailbox.jeoin![]

It is not enough to invoke join after invoking fork, one wait for the reply from join
before invoking join. These partial orders permit parallel execution. However, they do
not guarantee parallelism because the rules state no order between the reply from fork
and the invocation of work. The additional order:

T mailbox.fork!work — | work

which states that fork must reply before invoking work, would guarantee concurrent
execution. We clarify the reason for omitting this rule in section 4.2.

Assume a power operation on integers that returns the object’s value raised to the
power given by the argument. We can use the definition of fork and join to evaluate
two invocations of the power operation in parallel.

mailbox: forkjoin.new!'!([];

mailbox.fork! closure { reply 3.power!'4; };
n: 5.power!6;

sum: n + (mailbox.join!(]);

Figure 4.1 shows the implementation of fork and join illustrates the use of early
reply and explicit synchronization to achieve parallelism. This implementation uses only
the mechanisms described in chapter 3, with the addition of atomic Boolean reads and
writes. Busy-waiting synchronizes the two computations. We could easily change this
implementation to use semaphores for synchronization and avoid busy waiting. The last
method needs some explanation. The repeat operation executes its parameter while
the parameter returns true. It completes whenever the parameter returns false. The
postfix ~ operator signifies boolean negation. The first statement of the method for
join is equivalent to the Pascal statement:

while not ready do ;

This statement busy waits on the boolean variable ready.

38

forkjoin: object
{ ready: false;
result: O;

method fork work: port‘empty integer’

{ ready := false;

reply [O; ;; caller continues
result := (work![]);

ready := true;

I

method join replies integer ;

{ boolean.repeat! closure { reply ready” }; ;; busy wait
reply result;

};

Figure 4.1: Example Implementation of Fork and Join

4.1.2 Cobegin

Our next example is the cobegin construct, which executes two closures in parallel and
replies only when both have replied.? Its syntax and semantics are:

cobegin: object
{ method two [[a: port‘empty empty’; b: port‘empty empty’; 1]
replies empty;

}
do: cobegin.new![];

ldo.tuwo![& worki, b: work2] -+ | worki
| do.two![a: workl, b: work2] — | work2
t workl — Jdo.two![a: workl, b: work2]
T work2 — ldo.two![a: workil, b: work2]

These orders permit but do not guarantee parallel execution. The orders that guarantee
concurrent execution are:

| workl — | work2
{ vork2 — [workl

*We could provide a more general n argument cobegin given a language that allows lists as arguments
{e.g. Lisp).

39

These rules state that cobegin.two must invoke both closures before waiting on the
replies.
Given the above definition, we can use this statement to implement the parallel
evaluation of integer powers from the previous example.
n: 0;
m: O;
do.two![a: closure { n := (3.power'4); };
b: closure { m := (S.power!6); }; 1;
sum: n + m;

We use a valueless version of our previous definition of forkjoin and closures to
build an implementation of cobegin.

cobegin: object
{ method two [[a: port‘empty empty’; b: port‘empty empty’; 1]
{ mailbox: forkjoin.new!([];
mailbox.fork!workl;
vork2![(J;
mailbox.join![]:
}
}

4.1.3 Forall

In our next example we define an parallel iterator over a range of integers, analogous
to a parallel for loop or a CLU iterator [Liskov et al., 1977].3 Its syntax and semantics
are:

range: object [[from: integer; to: integer;]]

{ method forall work: port‘integer empty’ replies empty;
I

| rng.forall!'vork — | work!i [i: from < i< to]
| work!t — | work!(i+1) [i: from < i< to]
Iwork (¢) — T rng.forall!vork [i: from < i< to]

These rules state, respectively, that: the forall starts before any iteration; iterations
start in ascending order;* and all iterations reply before forall does. Again, we omit
the rule that guarantees parallelism:

| work!t — 1| work!j [i,j: from <1< to A from < j < to]

which says that the implementation would have to start all iterations before waiting on
the reply of any iteration.

Figure 4.2 shows the use cobegin and recursion to build a parallel divide-and-conquer
implementation of forall that uses a binary tree to start all instances of work.

*Unlike CLU, our emphasis is on the separation of semantics and implementation for general control
constructs, rather than the ability to iterate over the values of any abstract type. In addition, we
generalize CLU iterators from sequential execution to parallel execution.

‘This ruie is useful primarily when using forall to implement other control constructs.

10

range: object [[from: integer; to: integer;]]
{ method forall work: port‘integer empty’
{ (from = to) .if! closure { work!from; };
(from < to) .if! closure
{ middle: (from + to) / 2;
ccbegin. two!
[a: closure
{ range.new![from: from; to: middle; J.forall'!work; };
b: closure
{ range.new![from: middle + 1; to: to;].forall!work; };

Figure 4.2: Example Implementation of Forall

This implementation executes each iteration of forall in parallel, and therefore
would only be appropriate when the granularity of parallelism supported by the ar-
chitecture is well matched to the granularity of each iteration. Otherwise, it would
be better to use an alternative parallel implementation that creates fewer tasks than
iterations, where each task executes several iterations. The degree of parallelism pro-
vided by this alternative implementation may change easily. However, the degree of
parallelism cannot be selected using annotations for operation implementations alone
because the degree is a quantitative attribute. This isin contrast to a qualitative change
in implementation. We can use quantitative annotations to indicate the desired grain.
For example, an implementation of forall that grouped iterations (named with the
. GROUPED annotation), could accept a GRAIN annotation with an integer value. This
annotation can select the grain of parallelism.

These examples show the power of control abstraction when used to define parallel
control flow mechanisms. Using closures and early reply we can represent many different
forms of parallelism. In particular, we used closures, early reply, and a synchronization
variable to implement forkjoin. We then used forkjoin to implement cobegin, and
cobegin with recursion to implement forall.

4.2 Exploiting Parallelism

Our approach to adapting the exploitation of parallelism to different architectures relies
on the programmer specifving lots of potential parallelism and then implementing the
appropriate subset. The programmer does so by using constructs that represent po-
tential parallelism, and then selecting the appropriate implementations. The algorithm

41

determines the control constructs used to represent potential parallelism; the architec-
ture determines the implementations used to exploit parallelism.

4.2.1 Multiple Implementations

Data operations often liave multiple implementations. For example, matrix addition has
sequential, vector, and parallel implementations, each appropriate to different architec-
tures. We can extend this approach to control constructs as well. Control abstraction
permits multiple implementations for a given control construct. These implementations
can exploit differing sources of parallelism, subject to the partial order constraints of the
construct. In effect, the definition of a control construct represents potential parallelism;
the implementation defines the exploited parallelism.

Our rules for each of the control constructs in section 4.1 deliberately left the partial
orders underspecified to admit either a parallel or sequential impiementation. We com-
plete the example constructs in section 4.1 by providing alternative implementations
here. To distinguish each implementation, we annotate it with a descriptive identi-
fier that follows the operation identifier. We assume programmers will annotate each
implementation of a control construct with a name that describes the degree of paral-
lelism exploited by the implementation. For example, our parallel divide-and-conquer
implementation of forall from the previous section would be annotated as follows:

method forall DIVIDED...

whereas the alternative parallel implementation that groups iterations together for ex-
ecution would be annotated this way:

method forall_GROUPED...

As an example of implementation flexibility, consider a sequential iinplementation
of forkjoin that computes the result of the join operation first, and then continues.

forkjoin_SEQUENTIAL: object
{ result: 0;

method fork work: port‘empty empty’
{ result := (work![]); }; ;; caller waits for work to finish

method join
{ reply result; };
};

Using this sequential implementation of forkjoin within the implementation of
cobegin produces a sequential implementation of cobegin. Alternatively, we could
change the implementation of cobegin to execute the two statements in sequence with-
out the use of forkjoin.

12

cobegin: object SEQUENTIAL
{ method two [[a: port‘empty empty’;
b: port‘empty empty’;]]
{at{]; vtld; ¥
o

Although either approach results in a sequential implementation of cobegin, changing
the implementation of cobegin has two advantages: the implementation of cobegin
would no longer require an implementation of forkjoin and we would avoid the over-
head of invoking the fork and join operations.

Similarly, we can build a sequential implementation of forall either by using an
embedded sequential implementation of cobegin or by changing the implementation of
forall to use the sequential sequfor construct. Once again there is an advantage to
changing the implementation of forall — the sequfor construct has a particularly
efficient implementation based on machine instructions.

range: object [[from: integer; to: integer; 1]
{ method forall_SEQUENTIAL work: port‘integer empty’
{ self.sequfor!work; };

}l

4.2.2 Selecting Implementations

Once we have multiple implementations for a given control construct, some using varying
amounts of parallelism, we can control the amount of parallelism we exploit during
execution by selecting appropriate implementations at the point of use. One simple
technique for selecting implementations is program annotations. Each use of a construct
can select an appropriate implementation by placing the corresponding annotation after
the operation identifier in its invocation.>® For example,

3.power_PARALLEL'4

computes 3* with a parallel implementation of power.

A wide range of choices for exploiting parallelism are possible by choosing differ-
ent implementations of a few predefined constructs (such as forkjoin, cobegin and
forall). When the library of predefined implementations does not provide enough
architectural adaptability, a new implementation may be necessary. However, separat-
ing the semantics of use from the implementation of a control mechanism significantly
simplifies the task of exploiting a different subset of the potential parallelism.

In figure 4.3, we illustrate the use of annotations to select a particular parallelization
for Quicksort. We consider two potential sources of parallelism. When the array is
partitioned, the search for an element in the bottom half of the array that belongs in

®A reasonable set of default annotations will reduce the coding burden on the programmer. In
particular, we recommend that the default implementation be sequential.

5Smart compilers could chorse these annotations. The techniques for the automatic selection of
diffsrent implementations for sequential data structures {Low, 1976] may apply to choosing implemen-
tations for control constructs. We do not assume such a compiler.

43

sortable_array: object
{ sorting: array‘SIZE integer’.new! closure { reply 0; };

method quicksort_COARSE [[lower: integer; upper: integer;]]
{ lower < upper .if! closure
{ rising: lower;
falling: upper;
key: sorting#lower,0; ;; i.e. sorting[lower] as an r-value
boolean.while!
[cond: closure
{ cobegin_SEQUENTIAL.neu![].two!
[a: closure { boolean.repeat! closure
{ rising :=+ 1;
reply key >= (sorting#rising,®);

+
}
b: closure { boolean.repeat! closure
{ falling :=- 1;
reply key < (sorting#falling,®);
1
1
1;
reply rising <= falling;
3

body: closure { temp: sorting¥rising,@;
sorting#rising, := (sorting#falling,®);
sorting#falling, := temp;
};
1
sorting#lower, := sorting#falling,®;
sorting#falling, := key;
cobegin_PARALLEL.new![].two!
{ a: closure
{ self.quicksort_COARSE![lower: lower;
upper: falling; 1; };
b: closure
{ self.quicksort_COARSE![lower: falling+i;
upper: upper; 1; };

Figure 4.3: Example Annotated Quicksort

-+

the top half can occur in parallel with a similar search that takes place in the top half.
Similarly, the two recursive calls to Quicksort on each half of the array can occur in
parallel.

In this particular implementation we chose to exploit the coarse-grain parallelism
available during the recursive calls (using the _PARALLEL annotation to select the par-
allel implementation of the second cobegin) and chose not to exploit the finer-grain
parallelism available during partition. We could experiment with fine-grain parallelism
by simply changing the _SEQUENTIAL annotation to select the parallel implementation of
the first cobegin. We annotate the resulting implementation of quicksort with _COARSE.

Current parallelizing compilers could probably find the fine grain parallelism auto-
matically (there are no overlapping writes to variables), even though this parallelism
may not be useful on many multiprocessors. The more important source of parallelism
available in the recursive calls would be much more difficult, if not impossible, to find
automatically, because it must prove a partition on the data.

The control constructs of section 4.1 have several possible implementations. We may
adapt many parallel programs simply by choosing to use different implementations of
these constructs on different architectures.

4.3 Distributing Processing

QOur approach to distribution relies on data abstraction for data distribution and control
abstraction for process distribution. In this section we concentrate ca process distribu-
tion via control abstraction.

4.3.1 Distributed Implementations of Control Constructs

We adopt the approach of Par [Coffin and Andrews, 1989] and Chameleon [Alverson and
Notkin, 1991] in providing control construct implementations that distribute computa-
tions. For example, we add additional implementations of the forall control construct
to provide distribution. Given the parallel loop:

range.new![from: O; to: 100;].forall!
closure i: integer { ... };

we can distribute the computation by selecting a distributed implementations of forall.
For example,

range.nev![from: O0; to: 100;].forall_MODULAR!
closure i: integer { ... };

specifies the implementation that distributes processes in a modular fashion. That is
iteration ¢ executes on processor ¢ mod p where pis the number of processors. We expect
programming languages based on Matroshka to provide implementations of predefined
control constructs corresponding to several alternate distributions.

Programmers can provide alternate process distributions by defining new implemen-
tations of control constructs. For example,

15

range: object [[from: integer; to: integer; 1]]
{ method forall _PAIRED_MODULAR work: port‘integer empty’
{ range.new![{ from: 0; to: (from+to)/2;].forall MODULAR!
closure index: integer
{ work! (from+(index#*2));
work! (from+(index*2)+1);
3
Y
3

defines a new implementation of forall that distributes pairs of iterations in a modular
fashion, rather than single iterations.

Programmers can define new control constructs, which describe their algorithms
more precisely. For example, we can iterate over even integers in parallel with the
following code.

range.new![from: O; to: whatever; J].forall!
closure index: integer
{ (index¥%2 = 0).if! closure { }: };

This code throws away half the parallelism it generates. We can define a new control
construct, foreven, that iterates over even integers. We use it like this:

range.new![from: O; to: whatever;].foreven!
closure index: integer { };

This example does not specify more parallelism than it uses. We can implement foreven
as follows.

range: object [[from: integer; to: integer;]]
{ method foreven_MODULAR work: port‘integer empty’
{ range.new![from: O; to: (from+to)/2;].forall_MODULAR!
closure index: integer { work!(from+(index*2)); };
}.
}

This example illustrates how control abstraction can achieve precise distribution of
processing.

4.3.2 Combining Data and Control Abstraction

Data and control abstraction reach their full potential when combined. that is when data
abstractions export control operations. For example, assume we have a distributed
implementation of a tree. We can define an iterator for the tree. An iterator is a
control construct that applies work to each element of a data structure. Iterators are
generally useful in data abstraction [Liskov et al., 1977] because thev help separate
the access to a data structure from the implementation of that structure. In parallel
programming, iterators help to link data distribution with process distribution. When

16

data distribution and process distribution are distinct, programmers must explicitly
coordinate the two. This is difficult for non-regular computations that determine data
distribution dvnamically. On the other hand, iterators can manage process distribution
by shipping each task to the processor with the corresponding element.

5 — Extended Examples

Erample 1s always more efficacious than precept.
— Samuel Johnson, 1759

This chapter presents two extended examples, Gaussian elimination and subgraph iso-
morphism. These examples are not complete applications; application programmers can
expect to find more potential parallelism than these examples provide. On the other
hand. these examples represent non-trivial computations, such as might be found at the
core of parallel applications.

5.1 Gaussian Elimination

We will use Gaussian elimination! as an example of using control abstraction for archi-
tectural adaptability. Gaussian elimination is a well-known algorithm, has nontrivial
svnchronization constraints, and admits several different exploitations of parallelism.
Our goal is to create a single source program that represents these different exploitations,
each of which can be selected by an appropriate choice of annotations, and thereby du-
plicate previous extensive experience in the development and tuning of parallel Gaussian
elimination on the BBN Butterfly [Crowther et al., 1985; Thomas, 1985; LeBlanc, 1986:
LeBlanc, 19%8].

In solving a set of linear equations nsing Gaussian elimination. we first compute an
upper triangular matrix from the coefficient matrix M, producing a modified vector of
unknowns, which we then determine using back-substitution. Since back-substitution
is a small percentage of the total time required to solve the equations, it was not done
in any of the earlier experiments, and we will not consider it here. We concentrate
on computing the upper triangular matrix by eliminating (zeroing) entries in the lower
triangle (those entries below the diagonal), as illustrated in figure 5.1. To eliminate an
entry M, ;. we replace row M, with M, — M, %}4]- where M, is known as the pivot row.
However, we cannot eliminate M, , until after row M, is stable.1.e., M,y = 0,Vk < j. In
addition. all previous entries in row ¢ must already be eliminated, i.e., M, , = 0.¥k < j.

"We choose pivot equations in index order. numerically robust programs choose pivot equations
based on the data e use the fragile algorithm for presentation and historical reasons.

19

? ? ? ? ? ?
0 ? ? ? ? ?
0 0 ? ? ? ?
0 0 0 ? ? ?
0 0 0 0 ? ?
0 0 0 0 0 ?

Figure 5.1: Gaussian Element Elimination Goal

These two synchronization constraints limit the amount of parallelism that we can
expect to achieve.

We present this example as a sequence of programs derived from the standard sequen-
tial algorithm, reflecting earlier experiences with this application. Later, in chapter 6,
we propose a method that avoids the intermediate steps in this sequence and proceeds
directly to the final form.

5.1.1 The First Cut

Our first attempt is based on the standard (non-pivoting) sequential algorithm for upper
triangulation.

range.new![from: 0; to: SIZE-2;].sequfor!
closure pivot: integer
{ range.new'[from: pivot+1l; to: SIZE-1;].sequfor!
closure reduce: integer
{ fraction: system#$reduce,#pivot, / (system#pivot,#pivot,Q);
range.new! [from: pivot; to: SIZE-{;] .sequfor!
closure variable: integer
{ system#reduce,#variable, :=- (systemlpivot,Ivariable,tfraction);

};

The inner loop eliminates a single entry in the matrix; the middle loop eliminates
an entire column (below the diagonal); and the outer loop eliminates the entire lower
triangle.

The straightforward parallel implementation of this algorithm parallelizes the two
inner loops with forall.? Section 4.1 showed that the forall construct has both a
parallel and sequential implementation. By using annotations to select a parallel imple-
mentation for both loops, we can create an extremely fine-grain parallel implementation.

range.new'[from: O; to: SIZE-2;].sequfor!
closure pivot: integer
{ range.new![from: pivot+l; to: SIZE-1;].forall _DIVIDED!
¢losure reduce: integer
{ fraction: system#reduce,#pivot, / (system#pivot,#pivot,Q);
range.new![from: pivot; to: SIZE-1;].forall _DIVIDED!
closure variable: integer
{ system#reduce,#variable :=- (system#pivot,#variable,*fraction);
}
}
3

Vector processors could exploit the parallelism in the inner loop by invoking vector
instructions, rather than using the parallel implementation of forall. On a vector pro-
cessor we would expect our compiler to recognize a _VECTOR annotation and produce
vector instructions for the innermost loop.3 To port the program to a vector multi-
processor, such as the Alliant FX, we use both a parallel implementation for the outer
forall and a vector implementation for the inner forall.

The Butterfly lacks vector instructions, and cannot profitably exploit the parallelism
in the inner loop. Therefore, we can select an implementation that does not attempt
to exploit fine-grain parallelism by choosing the _SEQUENTIAL annotation for the inner
loop. The Butterfly can exploit the parallelism in the middle loop, so we choose the
_DIVIDED annotation for the middle loop. This was precisely the first program developed
in earlier work [LeBlanc, 1988].

The execution speed of the sequential and parallel annotations on the middle loop
of the Natasha program on the Butterfly appear in figure 5.2.

5.1.2 Distribution

The initial parallel performance of our program on the Butterfly is not good. In review-
ing the program, we note that there is no indication of data distribution. In a NUMA
machine, such as the Butterfly, we must distribute data and processing to obtain efficient
execution.

*Iterations of the outermost loop cannot execute in parallel because of the data flow constraint that
an equation cannot be used as a pivot until it has been reduced completely.

3We claim no particular advantage over vectorizing compilers here, however this example does show
that control abstraction can represent fine-grain parallelism explicitly.

64 N - - — - —-m--m——--— oo
sequential
32 -
16 7 parallel
Seconds
8 — ideal -
4—
2—4
1 T T T T T T T T 1
1 2 3 4 6 8 1216 24 32 48
Processors

Figure 5.2: Performance of First Gaussian Program

The obvious approach for data distribution in Gaussian elimination is to distribute
the equations equally among processors. Given n equations and p processors, there
are two simple ways to distribute equations. The first distribution assigns equations
ifn/pl.i[n/pl+1,...,(i+1)[n/p] — 1 to processor i (the divided distribution), assuming
zero based indexing. The second distribution assigns equations i,p+ i,2p +i... to
processor ¢ (the modular distribution). The data alone do not appear to decide between
the two distributions; we should look to process distribution.

The obvious approach for process distribution is also to distribute reductions equally
among processors. We should use the same distribution strategy that we use for data,
so that data and processing are co-located. For processing, the distribution method
does matter. If we use the divided distribution, we may have excessive waiting at the
start of the program while the first few pivot equations are reduced, and at the end of
the program while the last processor finishes up the last few reductions. The modular
distribution avoids both these problems by distributing both the first few equations
and the last few equations among the processors. Given that our process distribution
favors modular distributions, we should select the corresponding data distribution. The
resulting program is:

range.new![from: 0; to: SIZE-2;] .sequfor!
closure pivot: integer
{ range.new![from: pivot+1; to: SIZE-1;].forall MODULAR!
closure reduce: integer
{ fraction: system#reduce,#pivot, / (system#pivot,#pivot,Q);
range.new![from: pivot; to: SIZE-1;].forall _SEQUENTIAL!
closure variable: integer
{ system#reduce,¥variable, :=- (systemﬁpivot,#variable,*fraction);
};
};
+

Note that the program differs only in the annotations used.
The performance of the _DIVIDED and _MODULAR annotations appears in figure 5.3.
As expected, the _MODULAR distribution performs better.

64 —

32 -

16

Seconds

modular

1 T T T T T T T T 1
1 2 34 6 8 1216 2432 48

Processors
Figure 5.3: Performance of Distributed Gaussian

5.1.3 Improving Parallelism

The Gaussian program’s performance is not as good as it could be. To improve the
performance, we will concentrate on the order in which elements are eliminated. The
annotation of the inner loop does not affect the order of eliminations, so we will not
consider it in this analysis. The sequential annotation of the middle loop results in
the order of eliminations shown in figure 5.4. The total order of eliminations implies

? ? ? ? ? ?

0 ? ? ? ? ?

0 0 ? ? ? 2

0 0 0 ? ? ?
|

0 0 0 0 ? ?
e

0 0 0 0——20 ?

Figure 5.4: Sequential Gaussian Element Elimination

sequential elimination, and vice-versa.

When we use the _MODULAR annotation on the middle loop, we obtain the partial
order of eliminations shown in figure 5.5. The resulting program exhibits a series of
phases separated by the selection of a pivot. Experimentation with this parallelization
of Gaussian elimination highlighted the time processors spent waiting for other pro-
cessors to complete each phase. These empirical results led to the development of an
implementation based on the synchronization constraints for the problem.

The original sequential algorithm contains implicit synchronization constraints that
caused us to serialize the outermost loop. The data flow constraints for the algorithm
are that pivot equations must be applied to a given equation in order, and an equation
must be reduced completely before it can be used as a pivot. In our notation, the
constraints are:

! i reduce j — | k reduce j [i,7.k: 1 <1< j < size A i<k < size]
It reduce j — | j reduce k (1. k:1<i<j<size Aj<k < size

The constrains also appear in figure 5.6. We can enforce these constraints with explicit
svnchronization, resulting in the following program. We use blocking condition variables
with wait and signal operations for synchronization.

51

<
S “/o/o
/\O]

P

L
— 1™
|
!
~.|
el

Figure 5.5: Phased Gaussian Element Elimination

system: array‘SIZE array‘SIZE float’’;
done: array‘SIZE condition’;
done#1, .signal!(];
range.new![from: 1; to: SIZE-1;].forall DIVIDED!
closure reduce: integer
{ range.new![from: 0; to: reduce-1;].sequfor!
closure pivot: integer
{ done#pivot,.wait![];
fraction: system#reduce,#pivot, / (system#pivot,¥pivot,Q);
range.new![from: pivot; to: SIZE-1;].forall!
closure variable: integer

{ system#reduce,#variable :=- (system#pivot,#variable,*fraction);
};

T

done#reduce.signal!(];

s

Since this new version of the program has fewer constraints on parallelism, we expect it
may execute faster. Figure 5.7 shows that the fully parallel version does execute faster,
particularly with more processors.

Note that we cannot derive this particular version of the program from our previous
versions by selecting an appropriate combination of implementation choices for the
forall construct. In addition, we cannot select the use of explicit synchronization
in this new program in tandem with the parallelism we plan to exploit, since explicit
synchronization is embedded in the body of the loop. The fault, however. lies not in our
approach. but in our failure to use the full power of control abstraction. In particular,

w
(3]

? ? ? " ? ?
0 ? ? ? ? ?
0 0 ? ? ? ?
0 \\0\ 0 ? ? ?
0 \0 \0 \\\\0\ ? 7
0 0 0 ~0 0 ?

Figure 5.6: Fully Parallel Gaussian Element Elimination

we did not capture ine order in which we select pivot and reduction equation pairsin a
single control construct.

5.1.4 A New Control Construct

We can define a control construct, forpeirs, that takes two parameters: the number
of equations in the system, and the work for each pivot and reduction pair, which is to
reduce a single equation given a pivot. The construct encapsulates all parallelism and
synchronization in selecting pairs of pivot and reduction equations. We encapsulate the
reduction within a closure; its parameters are the indices of the pivot and reduction
equations. The forpairs construct invokes the closure with the appropriate pairings,
while maintaining the synchronization necessary for correct execution. Its syntax and
semantics are:

pair: [[pivot: integer; reduce: integer;]];

object: triangulate size: integer
{ method forpairs work: port‘pair empty’ replies empty;
5

t: trangulate.new!size;

| t.forpairs!vork

— | work![pivot: i; reduce: j;] [i,j:1<i<j< size]

I work![pivot: t; reduce: j;] [i,7,k:1<i< j< size

— | work![pivot: k; reduce: j;] A i< k< size|

T work![pivot: i; reduce: j;] [1,7j0k:1<i<j< size

— | work![pivot: j; reduce: k;] A i<k < size
56

Seconds

'-"~._pa.rallel

1 T T T 7 T T T T
1 2 34 6 8 1216 2432 48

Processors
Figure 5.7: Performance of Phased and Fully Parallel Gaussian

This construct has several implementations, corresponding to ihe different exploita-
tions of potential parallelism discussed above. A sequential implementation of forpairs
1s:

method forpairs_SEQUENTIAL work: port‘pair empty’
{ range.new![from: O; to: SIZE-2;].sequfor!
closure pivot: integer
{ range.new![from: pivot+1l; to: SIZE-1;].forall_SEQUENTIAL!
closure reduce: integer
{ work![pivot: pivot; reduce: reduce;];
};
H
b

By substituting forall DIVIDED for forall SEQUENTIAL we get forpairs_PHASED,
which exploits the same parallelism as the earlier phased version of the program. In
addition, we can also substitute forall_GROUPED for forall_SEQUENTIAL to obtain a
forpai-s_PHASED_GROUPED.

We exploit the more extensive parallelism based on the problem’s synchronization
constraints with the following implementation:

method forpairs_SYNCHED work: port‘pair empty’
{ done: array‘SIZE condition’;
done#1, .signal![];
range.new![from: 1; to: SIZE-1;].forall DIVIDED!
closure reduce: integer
{ range.new![from: 0; to: reduce-1;].sequfor!
closure pivot: integer
{ done#pivot,.wait![];
vork![pivot: pivot; reduce: reduce;];
3
done#reduce.signal![];
3
}

This implementation admits more parallclism than forpairs_PHASED, but may have
higher execution overhead because of the need to accommodate synchronization.
As earlier, we can substitute forall_GROUPED for forall DIVIDED to obtain a
forpairs_SYNCHED_GROUPED.

When rewritten to use forpairs, the fully parallel code to form the upper triangular
matrix looks like this:

system: array‘SIZE array‘SIZE float'’;
triangluate.new!SIZE.forpairs SYNCHED!
closure [[pivot: integer; reduce: integer;]]
{ fraction: system#reduce,#pivot, / (system#pivot,®pivot,Q);
range.new! [from: pivot; to: SIZE-1;].forall _DIVIDED!
closure variable: integer
{ system#reduce,#variable :=- (system#pivot,#variable, * fraction);
+
}

By selecting an appropriate implementation of forpairs and the forall construct em-
bedded in its body, we can describe all the previous parallelizations of this problem.
Programmers can select twenty different implementations of this program by varying
the two annotations to select a divide-and-conquer, grouped, sequential, or vector im-
plementation of forall, and a synchronized divide-and-conquer, synchronized grouped,
phased divide-and-conquer, phased grouped. or sequential implementation of forpairs.
Our experience has shown that forpairs_SYNCHED_GROUPED and forall _SEQUENTIAL
is the most efficient implementation on the Butterfly. The forpairs _SYNCHED_GROUPED
and forall_VECTOR annotations are most appropriate for the Alliant. This same pro-
gram has been ported to a Sun workstation by selecting forpairs_SEQUENTIAL and
forall _SEQUENTIAL. The key to the adaptability in our solution is the introduction of
an algorithm-specific control construct.

5.1.5 Distribution Revisited

After introducing an additional parallelization of Gaussian elimination, we should recon-
sider the distribution of processing and data. Reconsidering distribution ensures that
we obtain maximum performance. Figure 5.8 shows that the _DIVIDED distribution

64 S
divided, busy waiting

32

16 —

Seconds

“~_ modular
4~ R

2 —
1 T T T T T T T T
1 2 3 4 6 8 1216 24 32 4R

Processors
Figure 5.8: Performance of Fully Parallel Gaussian Distributions

performs much worse than the _MODULAR distribution. This poor performance results
from the processors attempting to work against the synchronization constraints of the
algoritzm. This mismatch between distribution and synchronization is particularly no-
ticeable when using busy waiting, where the program is effectively serialized.

5.1.6 Communication

When we examine the communication pattern in the Gaussian example thus far, we find
that there is much fine-grain communication during a reduction. This communication
arises when retrieving individual elements from the read-shared pivot row.

In regular computations such as Gaussian elimination, we can predict when read-
sharing will occur and rely on mapping operations [Coffin and Andrews, 1989] to repli-
cate equations. When each equation stabilizes, we can call a mapping operation that
instructs the array that it is now appropriate to replicate the equation. These mapping
operations are a complex form of annotation.

Another approach tosolving the read-sharing problem is to pass the pivot equation as
a parameter to the reduction equation. To do this, we recognize that an equation is itself

59

an important data abstraction. The work we pass to the forpairs control construct
now consists primarily of the invocation of a reduction operation on an equation.

system: array‘SIZE equation’;

triangluate.new!SIZE.forpairs_SYNCHED!

closure [[pivot: integer; reduce: integer;]]

{ system#reduce,.reduction![pivot: pivot; value: system#pivot,@; J;

Y
where equations have the implementation

equation: object store: array‘SIZE integer’
{
method reduction [[pivot: integer; value: eguation;]]
{ fraction: store#pivot, / (value#pivot,@);
range.new'[from: pivot; to: SIZE-1;].forall_SEQUENTIAL!
closure variable: integer
{ store#variable, :=- (value#variable, * fraction);
};
};
};

Figure 5.9 shows the performance improvement on the Butterfly associated with
abstracting equations. The figure understates the performance difference becausc the

Seconds

2 - --- without abstraction
with abstraction
L T T T T T T T T 1
1 2 3 4 6 8 1216 24 32 48
Processors

Figure 5.9: Performance of Gaussian With Data Abstraction

10

prototype Natasha implementation introduces an artificially high computation to com-
munication ratio in the non-abstract version, but does not do so in the abstract version.
(See section 7.3.3.)

5.2 Subgraph Isomorphism

This section highlights the interaction of data abstraction and control abstraction. In
particular, we show that data abstractions with embedded control abstractions are a
powerful and adaptable representation of potential parallelism. Our example is subgraph
isomorphism. The problem is to find the set of isomorphisms from a small graph to
subgraphs of a larger graph. We present a generalized form of the algorithm developed
for the 1986 DARPA parallel architecture benchmark [Costanzo et al., 1986), which is
based on Ullman’s sequential tree-search algorithm [Cllman, 1976]. The algorithm has
four grains of parallelism, however the benchmark program only exploited one grain.
Without a methoa and language to support architectural adaptability, there was not
enough time available during the benchmark to write the different programs necessary
to exploit the different grains.

A graph isomorphism is a mapping from each vertex in one graph to a unique vertex
in the second, such that if two vertices are connected in the first graph then their cor-
responding vertices in the second graph are also connected. In subgraph isomorphism.
the first graph is smaller than the second graph and we ask for an isomorphism from
the first graph to a subgraph of the second graph.

Our algorithm for finding isomorphisms postulates a mapping from one vertex in the
small graph (a small vertex) to a vertex in the large graph (a large vertex). This mapping
constrains the possible mappings for other small vertices. We then postulate a mapping
for the next small vertex, and constrain mappings based on that postulate. Because
each small vertex we choose may have several possible mappings, we must search each
possibility. This search takes the form of a tree, where nodes at level 1 correspond to
postulated mappings for small vertex i. The mappings at levels 1 through :—1 constrain
the possible mappings at level 1.

Each node in the tree must represent the remaining possible mappings for each small
vertex. At the root of the tree, each small vertex may map to any large vertex. The
root’s children have a single mapping for the first small vertex, and then several possible
mappings for the remaining small vertices. Tree nodes that have no possible mapping
for at least one small vertex are invalid isomorphisius, and we may prune these nodes
from the search tree. The leaves of the tree will have at most one mapping for each
small vertex. Leaves with exactly one mapping for each small vertex represent complete
isomorphisms.

Relative to the search time. initializing the search takes little time. So. we will
not discuss the initialization except to note that some static constraints may eiiminate
possible mappings in the root node.

61

Representation

In our representation, each vertex has an integer label, from 1 to the maximum number
of vertices. We represent each graph by an array, where each element of the array
corresponds to a vertex and contains the set of integer labels for the vertex’s immediate
neighbors.

graph‘SIZE’: object

{ store: array‘SIZE set‘SIZE integer’’;
}

small_neighbors: graph‘SMALL’.new![];
large_neighbors: graph‘LARGE’.new!(];

Small vertex 1 connects to the small vertices in small_neighbors#1.

We represent tree nodes with an array of sets. Each element of the array corresponds
to a small vertex and the set contains the integer labels of large vertices to which the
small ve tex might map.

tree_rode‘SMALL LARGE’: object

{ stcre: array‘SMALL set‘LARGE integer'’;
X

node: tree_node‘SMALL LARGE’ .new![];

Small v rtex 1 may map to any element of node#1.

Searcting Possibilities

The corsest grain of parallelism arises when searching among the various possibilities
for a g'.en small vertex. We call the small vertex under consideration the focus, and
we call the current possible mapping the image. Given a set of possibilities in the set
possibie#focus, we need to examine each postulated mapping. Using a language with
the tvp:cal fixed control constructs, we would write:

methcd search
{ ra ge.nevw'[from: O; to: maximum_large;].forall!
clcsure image: integer
{ j>ssible#focus, .member!image .if! closure
4+ selfQ@.examine!image;
}
¥

When sciecting a parallel implementation of forall, we must pay the overhead of
starting each task. Because most possible mappings will be near empty, the if condition
is usually false, and most tasks will immediately finish. This immediate ending of tasks
represents a substantial amount of wasted effort.

The problem with the above code is that we wish to iterate over the elements of
the set, but the forall forces us to iterate over the representation for the set and then

62

test for membership. A better approach is to combine data abstraction and control
abstraction and define a parallel iterator for sets, generalizing the CLU [Liskov et al.,
1977] iterators.*® Iterators enable us to state precisely that the parallelism is over
the elements present, and not over potential elements. We define a forall_elements
operation that executes a closure (or operation) for each element of the set.

set‘integer’: object

{ method forall_elements work: port‘integer empty’ replies empty;

H

| members.forall_elements'work — | work!': [1:1€ members)
T work!: — | members.forall_elements!work [i:i € members]

[terators are also useful in the distribution of processes with data.
Given the forall_elements operation, we rewrite the search operation as:

method search

{ node#current_small,.forall_elements!
closure image: integer
{ self0@.examine'image;
};

}

This representation is clearer and potentially more efficient. Building the iterator re-
quires a mechanism to define control abstractions that interact with data abstractions.
The closure mechanism serves this need.

This grain of parallelism in searching tree nodes is coarse, suitable for multiprocessors
and distributed syvstems.

Examining a Mapping

The next task is to examine a single proposed mapping and propagate the constraints
of that mapping. The first task is to enforce the minimal constraints — the focus vertex
may map to no large vertex other than the image vertex, and no other small vertex may
map to the image vertex. Next, we check to see if the incomplete ison.orphism is a leaf
in the search. If so. we report the isomorphism,® otherwise we apply better constraints.

*Iterators are a limited form of control abstraction intended to support data abstraction. With
iterators. the user of an abstraction can apply an operation to all the elements of an abstract data type
without knowing the representation of the type.

*Gienerators are data operations that generate a sequence of elements on demand. Programmers
often call generators from within loops to implement iteration. But, the generator is not an iterator
and 15 not a control abstraction.

*Lhe constraint filters are not romplete They may leave some invalid isomorphisms at the leaves of
the search tree. A separate check will ehiminate these before they are reported.

63

method examine postulate: integer
{ image := postulate;

self .minimal_constraints!(J;

focus = maximum_small .ifelse!

[then: closure { self.report_possible_isomorphism!(]; };
Else: closure { self.constrain'[J; };
1
}

We use two non-trivial constraints, vertex connectivity and vertex distance, to filter
possible mappings. Because these filters only remove elements from the sets of possible
mappings, we may execute them in parallel. which requires atomic element removal.
The filters may leave some map sets empty, in which case no isomorphism is possible
for that node. If we have a valid node, we can choose the next vertex, and search its
possibilities,

method constrain
{ cobegin.new![].two!
[a: closure { self.distance_filter!'y J; };
b: closure { self.connect_filter'[J]; };
1;
self .no_empty_mapping'[].if! closure
{ focus :=+ 1;
self.search'[J];
};
s

At most, this routine offers two-way parallelism. This parallelism is usually not
enough, alone, to exploit modern multiprocessors effectively. However, it can supple-
ment other forms of parallelism by doubling the number of processes. which often in-
creases the ability of execution systems to balance computa.ional load. Because both
filters change the node, a shared-memory architecture is likely to be more effective. On
the other hand, when the filters execute sequentially, the serond filter need not examine
mappings removed by the first filter, which reduces the amount of computation. The
programmer must decide when exploiting parallelism here is appropriate and when it is
not.

Distance Filter

Two small vertices separated by a distance z canaot map to two large vertices separated
by a distance y > r.” We rely on two precomputed arrays, small_distance and
large_distancae, to retrieve distance information. Using the current focus vertex and
its postulated image as one vertex of each pair, we successively choose each small vertex
as the second small vertex and remove those possible mappings with an inconsistent
distance. Using forall_elements the operation is:

"Two small vertices can map to large vertices separated by a distance y < 1 because the isomorphism
mav ignore edges in the large graph that shorten the distance.

tt

method distance_filter
{ range.new![from: 0; to: maximum_small-1;].forall!
closure other_small: integer
{ possible#other_small,.forall_elements! closure other_large: integer
{ small_distance#focus,#other_small,
< (large_distance#image,#other_large,®) .if!
closure { possible#other_small.remove_element'!other_large; };
};
}
};

As in the search operation, the if condition quickly ends many potential tasks.
Because we cannot evaluate the condition in terms of the members of the set alone,
we cannot adopt the earlier solution and fold the test into a simple iterator. However,
we can define a conditional iterator. Conditional iterators accept a condition to test
elements as well as the work to perform on each element if it passes the test. This
approach enables us to evaluate the conditions sequentially, avoiding the overhead of a
parallel task for quick computations, and then create a parallel task for each element
that passes the test. The conditional iterator for integer sets is:

method forall_elems_cond
([test: port‘integer boolean’; work: port‘integer’;]]
replies empty;

| members.forall_elems_cond!

[test: ...; work: ...;] — | test!: [1:1 € members]
| test!i — | work!'i [i:1 € members A test!'i]
[work!:i — | members.forall_elems_cond!

[test: ...; work: ...;] (i :1 € members A test!i]
! test!t — | members.forall_elems_cond!
[test: ...; work: ...;] [i:1€ members A - test!i]

This definition leaves room for several different implementations.
Given forall_elems_cond, the distance filter becomes:

method distance_filter
{ range.new![from: 0; to: maximum_small;].forall!
closure other_small: integer
{ possible#focus,.forall_elems_cond!
[test: closure other_large: integer
{ reply small_distance#focus,#other_small,
< large.distance#image,#other_large,@; };
work: closure other_large: integer
{ self#other_small, .remove_element'other_large; };

The conditional iterator is strictly more expressive than a simple iterator. (A con-
stant true condition yields the semantics of the simple iterator.) The implementation of
the conditional iterator can exploit parallelism in the work, and not among conditions,
which was not possible with the simple iterator.

Note that in the code above, the body of the forall_elems_cond acts only on the
set used in the forall_elems_cond. We ask the forall_elems_cond to create potential
parallelism, then ask remove_element to synchronize so that element removal is atomic.
We can eliminate this inconsistency by recognizing that we are removing elements that
meet a condition, and use an operation representing exactly that action. We define a
remove_elements_cond operation that for each element of the set asks a closure if it
should remove the element.

method remove_element_cond test: port‘integer boolean’ replies empty;

| members.remove_element_cond!test — | test!: [1:71 € members]
[test!t — [members.remove_element_cond!test [{:71 € members]

[ts implementation must synchronize with other operations on the set.
Our finai version of distance_filter expresses our intent precisely, while leaving
much latitude in the possible implementations of remove_element_cond.

method distance_filter
{ range.new![from: O; to: maximum_small-1;].forall!
closure other_small: integer
{ possiblesother_small, .remove_element_cond!
closure other_large: integer
{ reply small_distance#focus,#other_small,
< (large_distance#image,¥#other_large,Q);
};
},
};

The potential sources of parallelism are in the forall (medium grain), and in
forall_elems_cond or remove_element_cond (fine grain). The former is appropri-
ate to shared memory multiprocessors and the latter is appropriate to vector and SIMD
machines.

Connectivity Filter

Given a postulated mapping, the neighbors of the focus vertex can only map to neighbors
of the image vertex. Again, we can use forall_elements in iterating over the neighbors.
We can also remove possible mappings for the neighbors in parallel. The resulting
mapping is the intersection of the possible mappings and the neighbors of the current
large vertex. With the benefit of experience gained above, we can move directly to an
operation for set intersection and assignment.

fits

method connect_filter [[at: integer; for: integer;]]
{ small_neighbors#,focus,.forall_elements!
closure other_small: integer
{ node#other_small, .assign_intersection!
(large_neighbors#image,@);
¥
}

We can leave the degree of exploited parallelism to the implementation of the set inter-
section. Given an appropriate implementation of sets, vector instructions can implement
the intersection. A second potential source of parallelism, appropriate for shared mem-
ory multiprocessors, arises in forall_elements.

Control abstraction is a powerful tool for defining representation-independent
operations on data. For instance, we can implement assign_intersection with
remove_element_cond.

method assign_intersection others: set‘integer’
{ self.remove_element_cond!

closure member: integer

{ reply others.element_of_set'!member”;

3
X

Given such a tool for defining operations, we may be tempted to define data abstrac-
tions that provide minimal sets of operations and rely on general control abstraction
to implement more extensive data operations. Unfortunately, when we rely on general
control abstraction to implement data operations, we lose the ability to take dva...age
of the representation of data in exploiting parallelism. For example, it is difficult to
derive an implementation of set intersection based on anding bit strings from the above
definition of assign_intersection. If data abstractions export a wide varicty of oper-
ations, programmers of implementations of these abstractions can improve performance
by taking advantage of the representation.

Control abstraction encourages data representation-independent programming,
which users of abstractions desire for architectural adaptability. Designers of abstrac-
tions must be careful to include many operations, so that implementors of abstractions
can take significant advantage of the representation.

We identified several sources of parallelism in our algorithm. They are appropriate
to distributed, multiprocessor. and uniprocessor machines. Programmers need only
choose the appropriate annotation when adapting the program to a given machine. For
example:

67

the implementation may annotate

of operation the invocation of with anv of the annotations
search forall_elements _SEQUENTIAL _GROUPED _DIVIDED
constrain cobegin _SEQUENTIAL _PARALLEL
distance_filter forall _SEQUENTIAL _GROUPED _DIVIDED
remove_elem_cond _SEQUENTIAL _VECTOR
connect_filter forall_elements _SEQUENTIAL _GROUPED _DIVIDED

assign_intersection _SEQUENTIAL _VECTOR

Selecting combinations of these annotations provides us with 216 possible implementa-
tions of subgraph isomorphism. We expect a dozen to make sense for current machines.
This example uses iterators, conditional iterators, and conditional data operations, to
show how data and control abstraction interact to provide powerful mechanisms for
representing and exploiting parallelism.

HN

6 — Programming Method

There never has been, nor will there ever be, any programming language
in which it 1s the least bit difficult to write bad code.

— Lawrence Flon

Abstraction reduces the cost of any program changes that may arise while debugging,
porting, and enhancing programs. This chapter presents a method for using control
abstraction in parallel programs to achieve architectural adaptability. Programmers are
generally aware of the benefits and costs of data abstraction, but not of control abstrac-
tion. Just as the introduction of data abstraction requires a change in programming
method. so does the introduction of control abstraction.

6.1 Abstract Early and Often

Abstracting early is a good principle in sequential programming because it delays com-
mitment [Thimbleby, 1988], which localizes the program’s assumptions and reduces the
effort needed to change a program. However, when programming sequentially, we often
do not use abstractions because there is a simple, natural, and obvious best implemen-
tation. The best implementation is usually obvious because most sequential machines
share the same von Neumann ‘type architecture’. In contrast, there are several common
tvpe architectures [Snyder, 1986] for parallel machines. The performance of a given ex-
ploitation of parallelism may vary widely among these type architectures. Abstraction
helps adapt programs among different tvpe architectures. Parallel programmers should
resist implementing prematurely, and rely on data and control abstraction.

In developing a program using control abstraction, the programmer needs to identify
the places where the algorithm organizes and schedules ‘units of work’. The programmer
shonld encapsulate each of these ‘organize and schedule’ activities in a control construct.
For instance. a keyv control abstraction in Gaussian elimination is “select the pivot and
reduction equations™. Its corresponding unit of work is “reduce an equation™. So, we
should explicitly represent the “select™ control abstraction with a control construct.

Adaptable programs will use control abstractions that minimize the restrictions on
statement sequencing (1.e. maximize potential parallelism). This leaves maximum free-
dom to choose an efficient implementation.

69

exploitation of parallelism in such a construct, we implicitly select the appropriate syn-
chronization. If an implementation of a construct exploits no parallelism, it needs no
synchronization, and need not pay the overhead.

Embedding synchronization in a construct limits its applirability, so we must be
careful to select a construct appropriate to the problem at hand. When choosing an
existing control construct that does not provide the necessary synchronization in its
implementation, we must insert explicit synchronization into the work to be performed.
Unfortunately. this commits us to a specific exploitation of parallelism that cannot be
changed with an annotation. The resulting program is more difficult to tune or port.
Rather than use an inappropriate control construct and additional explicit synchroniza-
tion, the preferred approach is to buil! a new construct that encapsulates the correct
synchronization.

Gaussian Elimination in the Uniform System

An interesting example of the use of a control construct with insufficient synchroniza-
tion arose in previous work with Gaussian elimination. An early version of the program
developed at BBN [Thomas. 1985] used the Uniform System parallel programming li-
brary [Thomas, 1926]. The Uniform System provides a globally shared memory and a
set of predenned task generators. Each generatcr accepts a pointer to a procedure ard
executes the procedure in parallel for each value produced by the generator. Thus, gen-
erators are a limited form of control abstraction. The Uniform System provides genera-
tors for manipulating arrays and matrices, including GenOnHalfArray, which genecrates
the indices for the lower triangular portion of a matrix. The Uniform System imple-
mentation of Ganssian elimination used this generator. It's Natasha representation and
partial orders are:

pair: [[indexi: integer; index2: integer;]1;

triangulate: object size: integer;

{ method GenOnHalfArr:y work: port‘pair empty’ replies empty;
};

t: triangulate.new!SIZE;

| t.GenOnHalfArray'!work

— | work![indexi: i; index2: j] (1.j:1<i<j< size]
T work![indext: t¢; index2: j]
— ! t.GenOnHalfArray!work [i.j:1<i<j< size]

This generator provides the parallelism of our forpairs construct, but without
the svnchronization constraints. As a result, the Uniform System program included
explicit synchronization within the body of the work.! Gaussian elimination using
GenOnHalfArray looks like this:

'The actual program used more efficient synchronization than is shown here, but this version a-cu-
rately represents the contral flow and is consistent with our eariier examples.

Likewise, an equation in Gauss'.n Elimination is a useful data abstraction and “re-
duce an equation™ is an abstract operation on equations. The equation abstraction gives
us another potential site for communication. When appropriate, we can communicate
from one nrocessor to another at the invocation of “reduce an equation”, rather than at
lower levels in the code. More data abstractions give us more potential communication.

Where appropriate, programmers should use data abstractions that provide control
abstractions to manipulate the data. For example, we should program in terms of sets
(data abstraction) and parallel iteration over sets (control abstraction), rather than
bit vectors (data representation) and parallel scanning of bit vectors (representation-
dependent control). The resultant program will be both easier to understand and easier
tv adapt to other architectures.

6.2 Use Precise Control Constructs

When the control constructs we use to specify parallelism do not precisely express the
parallelism appropriate to an algorithm. we must introduce explicit svnchronization to
restrict excessive parallelism or we must accept less parallelism than the algorithm per-
mits. In this section, we show how control abstraction can enable simultaneous selection
of parallelism and control synchronization, as well as accommodate data dependence.

6.2.1 Embed Synchronization

The presence of parallelism in a program generally implies the presence of synchroniza-
tion. When we introduce parallelism, we must also introduce synchronization. Ideally,
we select synchronization with the same mechanism that exploits parallelism. Parallel
programs exhibit two types of synchronization: data synchronization ensures consistent
access to data by independent threads of control; control synchronization coordinates
hetween threads created to work together in parallel. In particular, synchronization
that supports a data dependence is control synchronization. As in Multilisp [Halstead.
10%5], we assume that data svnchronization is embedded in data abstractions.

Explicit syvnchronization needed to restrict excessive parallelism must be inserted
or removed depending on the choices made to exploit parallelism. This process can be
errui-prone and can make adapting programs to different architectures difficult. There-
fore, when explicit svnchronization is needed to implement control synchronization, it
should appear only in the implementation of control constructs, and never in the body
of work passed to a control construct. If. in the development of a program. it becomes
necessary to introduce svnchronization into the body of work, the control construct
shonld be redesigned to embed the synchronization.

When using a control construct that provides more synchronization or serialization
than needed, we abandon potential parallelism. Constructs that maximize potential
paralielism leave more room for exploitation of parallelism and enhance our ability to
adapt to new architectures. We should nse control constructs that provide the maximum
potential parallelism allowed by the algorithm.

We shonld choose control constructs that express precisely the parallelism and syn-
chronization that the algorithm requires, neither more nor less. When selecting an

70

system: array‘SIZE array‘SIZE float'’;
pivot_done: array‘SIZE condition’;
element _done: array‘SIZE array‘SIZE condition’’;
pivot_done#1,.signal![];
trianglulate.new!SIZE.GenOnHalfArray DIVIDED!
closure reduce: integer
{ pivot_done#pivot, .wait![];
pivot > 1 .if! closure
{ element_done#reduce,#(pivot-1),.vait![];
}
fraction: system#reduce,#pivot, / (system#pivot,#pivot,Q);
range.new![from: pivot; to: SIZE-1;].forall DIVIDED!
closure variable: integer
{ system#reduce,#variable,
:=- (system#pivot,#variable, * fraction);
I
element_done#reduce,#pivot.signal!([];
(pivot = (reduce-1)).if! closure
{ pivot_done#reduce, .signal![];
};
Y

This implementation uses explicit synchronization to provide the serialization implicit
in the sequfor loop in forpairs_SYNCHED. (See section 3.1.4.) Given the limited
facilities for creating new generators in the Uniform Sysiem, and the existence of
GenOnHalfArray, this implementation was a reasonable one. Nevertheless, a more
efficient implementation would have been possible had the correct control construct
been available or easily created. With control abstraction, we can build constructs that
contain the necessary svnchronization.

6.2.2 Explicit Versus Implicit Synchronization

In the implementation of a control construct, we often have a choice between relying on
the synchronization implicit in other control constructs or using explicit svnchronization.
i nere1s no wingle resolution of this choice for all cases. For example, the synchronization
implicit in the outer loop of our phased implementation of Gaussian upper triangulation
unnecessarily limits the amount of parallelism in the program. On the other hand, some
of the explicit synchronization used in the Uniform System program is both expensive
and unnecessary. The forpairs_SYNCHED implementation is a balanced combination of
explicit and implicit svnchronization. It uses explicit svnchronization to remove the limit
on parallelism imposed by the phased implementation. It also uses a sequfor loop to
serialize the application of pivots to a single equation. in place of explicit synchronization
in the Uniform System program.

-1
to

6.2.3 Expose Data Dependence

In Gaussian elimination, we were able to concentrate solely on the partial order rules
to derive a new control construct and embed synchronization within the construct (sec-
tion 5.1.4). We may not always be able to do so. Occasionally, the natural expression
of control and its work places a data dependence deep within the body of a loop, rather
than at the beginning or end. For example, consider a sequential loop of the form:

range.new![from: 1; to: N;].sequfor!

closure i: integer

{ statement list 1; a#(i+1), := (a#i,Q); statement list 2;
};

This loop has a loop-carried data dependence between iteration i and iteration i4+1. We
cannot use forall to specify parallelism because we would violate the dependence. One
possible approach is to insert explicit synchronization around the statements containing
the data dependence. Unfortunately, the presence of synchronization within the body
of the loop would then be separate from the implementation of the loop, which is where
we choose whether to exploit parallelism. If we follow our previous advice and avoid
explicit synchronization, this dependence forces us to choose a control construct that
provides more synchronization than the algorithm actually requires. The solution to this
dilemma is to break the loop body into separate bodies, exposing the data dependence,
and then use a control construct that handles the multiple bodies.

We create a construct that accepts the loop in three pieces, correspanding to the
statements that can execute in parallel before and after the data dependence, and the
statements containing the data dependence. This more complex construct is also more
precise, which gives us more flexibility in exploiting parallelism.

method forall3 [[head: port‘integer empty’;
body: port‘integer empty’;
tail: port‘integer empty’;]]
replies empty;

1ng: range.new! [from: lower; to: upper; J;

{ rng.forall3![head: ...; body: ...; tail: ...;]

— | head!: (i: lower <1 < head]
T head!i — | body!': [1: lower < i< head]
T body'i — | tail's [i: lover < i < head]
[body!'t — | body!(i+ 1) [: lower < i< head]
ftailts —
! rng.forall3!'[head: ...; body: ...; tail: ...;] [1: lowver < i< head]

The implementation must execute head, before body; before tail; and execute body;
before body,,;. Using this control abstraction, we can rewrite the original loop as
follows:

range.new![from: 1; to: N;].forall3!

[head: closure i: integer { statement list 1; };
body: closure i: integer { a#(i+1), := (a#i,Q); };
tail: closure i: integer { statement list 2; };

1

This control construct admits a parallel implementation wherein the head's and
tail’s all execute in parallel.

method forall3_DIVIDED
([head: integer; body: integer; tail: integer;]]
{ size: (from+1)-to+1;
blocking: array‘size semaphore’;
blocking#lower, .signal![];
self .forall _DIVIDED!
closure i: integer
{ head!'i; blocking#i,.wait!'[d;
body!i; blocking#(i+1),.signal!(];
tailti;
Y
3

An alternative implementation that avoids the use of explicit synchronization and results
in a slightly different parallelization is as follows:

method forall3_PHASED

([head: integer; body: integer; tail: integer; 1]
{ self.forall DIVIDED'head;

self.sequfor!body; ;3 always sequential
self.forall DIVIDED!'tail;

T

The _DIVIDED implementation avoids phases and admits more parallelism, but because
it uses blocking syvnchronization primitives, may be less efficient. The programmer can
decide if the benefit of the extra parallelism is worth its cost.

We must balance the programming cost of splitting bodies of work against the likely
possible architectures that may exploit the newly exposed parallelism. This balance
depends on the synchronization constraints within the construct and the likely num-
ber and size of units of work for the construct — small units of work with complex
svnchronization constraints are unlikely to have efficient implementations on current
architectures. This observation applies to Gaussian elimination. In particular, svn-
chronization constraints between pivot and reduction terms (rather than equations) are
possible, but synchronizing each multiplication and subtraction pair introduces unac-
ceptable overhead on most current architectures.

T4

6.3 Reuse Code

Parallel programming is hard, so programmers should build on each other’s work where
possible. A library of well-debugged data and control abstractions is the programmer’s
most effective productivity tool. If the programmer needs a reasonably common control
construct, it may appear in a library of constructs and their implementations. However,
some control constructs will be algorithm-specific; no library will contain implementa-
tions for those constructs. The programmer must design and implement the construct.
However, the programmer need only code implementations as needed for the architecture
at hand, and need not code implementations for all architectures or possible exploita-
tions of parallelisin. The set of implementations will expand during program tuning
and porting. Each implementation remains available for use later. In contrast, without
control abstraction programmers tend to abandon previous exploitations of parallelism
in the search for the best exploitation for a given architecture. A program’s invest-
ment in architectural adaptability is primarily in the constructs it uses, and secondarily
in the set of implementations for those constructs. Changing a construct is a serious
undertaking: using another implementation of a construct is not.

Because the ability of a programmer to tune the program depends on the availability
of several implementations for many control abstractions, the presence of a library of
general-purpose control abstractions will directly affect the viability of a programming
language based on the Matroshka model.

6.4 Experiment with Annotations

After developing a program using control abstraction, the programmer must anno-
tate each use of a control construct with the desired implementation. Initially, pro-
grammers simply make their best guesses, or leave the choice to defaults or the com-
piler. Later, programmers must refine their annotations. In sequential programming,
the code sections critical to performance, and the effect of optimizations on them,
may not be at all obvious, and are often counter-intuitive [Bentley, 1982]. The crit-
ical code sections are even more unpredictable in parallel programming. Experimen-
tal methods and program analysis tools [Fowler et al., 1988; Mellor-Crummey, 1989:
LeBlarc et al., 1990] will help parallel programmers determine the most efficient ex-
ploitation of parallelism. When poor performance relates back to a control construct,
the programmer can easily choose an alternate implementation (using more or less
parallelism and synchronization) by changing the annotation to select an alternate im-
plementation. The programmer may then measure the effect of the new annotation on
program performance.

7 — Natasha Implementation

For vhich of you, intending to build a tower, sitteth not down first, and
counteth the cost, whether he have sufficient to finish 1t?

— The Bible, St. Luke

We showed the importance of abstraction in parallel programming, and how to ex-
ploit different grains of parallelism by selecting an appropriate implementation for each
abstraction. Although descriptive power is an important property, programmers use
parallelism to improve performance. Any programming language that uses closures and
operation invocation to implement the most basic control mechanisms might appear to
sacrifice performance for expressibility. With an appropriate combination of language
and compiler, however, user-defined control constructs can be as efficient as language-
defined constructs. We support this claim with an implementation and its analysis.
First, we describe our implementation of Natasha. Second, we describe straightforward,
locally applicable optimizations that reduce the execution cost of Natasha mechanisms.
Third, we compare the execution speed of Natasha programs against equivalent C pro-
grams.

7.1 Compiler and Library Organization

The Natasha implementation is composed of a compiler generating C code for the GNU
C compiler {Stallman, 19589}, and a run-time library. The Natasha compiler takes ad-
vantage of several GNU extensions to the C language. The run-time library assumes a
shared-memory environment, but is otherwise mostly machine independent. The ma-
chine dependent parts include support for the Sun-3 under the Unix operating system,
the BBN Butterfly Parallel Processor [BBN, 1985a) under Chrysalis [BBN, 1985b], the
Butterfly Plus [BBN, 1937] under Platinum [Cox and Fowler, 1989], the Butterfly Plus
under Psyche [Scott et al., 1990}, and the Alliant FX [Alliant, 1987] under Concentrix
(a Unix derivative) [Alliant, 1989]. An efficient implementation of Natasha requires
cooperation between the compiler, runtime library, and host operating system.
The Natasha compiler has the following passes:

Preprocess: The compiler runs all programs through the C preprocessor first. This
feature enables programmers to avoid editing program source when changing an-
notations.

77

Parse: The parse phase builds a parse tree. It uses the LEX scanner generator and the
yacc parser generator. The parse rules do l-value and r-value interpretation (see
section 3.3.8) and recognize late replies (see section 7.2.1).

Bind: The bind phase builds a semantic tree from the parse tree by binding types
to parse tree elements. This phase builds the symbol table and checks types for
censistency. This phase does port in-lining and closure in-lining for predefined
control operations by examining the syntax tree for known patterns.

Generate: The code generation phase selects and writes GNU C source as an interme-
diate program that implements the Natasha program. Both the bind and generate
phases are written in C++.

Compile: The Natasha compiler invokes the GNU C compiler (version 1.35) on the
intermediate program and links in the Natasha run-time library.

The machine-independent part of the run-time library implements the prodefined
tvpes, task invocation, task scheduling. processor management. and program initializa-
tion. The machine-dependent part of the run time library implements atomic locks and
connters, coroutine switch, system memory allocation, terminal input/output, process
creation (one per processor), and address space initialization.

7.2 Optimizing Natasha Mechanisms

This section presents several optimization techniques that are well within the bounds
of current compiler technology. The Natasha compiler uses most of them, though not
always in a general way. We expect a production compiler for other languages based on
Matroshka to use nearly all these optimizations.

7.2.1 Operation Invocation

The presence of an object model need not imply poor execution performance. While
Natasha programs can express inherently expensive operations, operations rarely use
their full generality. By implementing each invocation with only the generality neces-
sary to execute properly, we can substantially reduce the cost of operation invocation.
This section describes several optimizations that successively cast away more generality
and thereby improve the execution performance of Natasha programs. With these opti-
mizations. operation invocation can be as efficient as code written n-line in conventional
algorithmic languages. The approach relies on providing several different implementa-
tions for operation invocation, each appropriate to a different class of operation.

Invocations as Procedure Calls: Since an invocation may execute concurrently
with its invoker after executing its reply, a conservative implementation of invocation
provides a separate thread of control for each invocation. This approach is prohibitively
expensive. We can reduce this cost by noting that operations that have no statements
after the reply have no opportunity for parallelism and have a partial order identical to

TN

regular procedures. We can therefore implement these operations as regular procedures.
Even though invocations are frequent. the vast majority have valid implementations as
procedure calls.

Delayed Replies: In those cases where an operation replies early, it is often safe
to delay the reply until the invocation completes. This delay allows us to exploit the
procedure implementation once again. We can safely delay a reply if no statement
following the reply requires resonrces (such as synchronization variables) that statements
following the invocation release. This situation is common and is the case in all our
examples. We cannot expect the compiler to always determine whether to delay a reply,
so we use two different forms of reply. One indicates that the compiler may delay an
early reply. and the other ‘ndicates that the compiler may not.!

In-line Ports: The use of Natasha ports hides the invoked object and the exact
method from the invoker. While this aids program and communication independence,
it means that simple implementations must call method procedures indirectly. We
eliminate most of this cost by noting that programs invoke most ports immediately after
forming them. By eliding the port formation, the compiler can generate direct calls to
the method procedures. This optimization provides little benefit by itself, however, it
is a necessary step in achieving the following optimization.

In-line Methods: Even if we are able to avoid creating a new thread of control for
each operation invocation, we may still pay the price of a procedure call for each invoca-
tion. We can reduce overhead even further by statically identifying the implementation
of operations., which makes it possible to use in-line substitution. Natasha identifies
implementations through static typing: other languages could identify implementations
through type analysis.

7.2.2 Task Execution

Eliminating tasks will substantially reduce sequential execution time, but leaves no room
for parallelism. We must. at some point. pay the price for task creation so that parts of
the program may execute in parallel. The Matroshka model encourages a large number
of short-lived parallel tasks. so task efficiency is important. The Natasha compiler dces
several optimizations that improve the performance of tasks.

Migrate Tasks: The primary task optimization is to execute the task on the processor
that contains the corresponding object. This means that interprocessor communication
occurs only at invocation and replv.

Eliding Local Tasks: Sometimes it is most efficient to ‘uvoke an operation as a
remote task when the object is remote. and to invoke the operation as a procedure when

'On uniprocessars, early replies that are not delayed force a multi-tasking implementation.

the object is local. A simple test for object locality makes this operation inexpensive.
Frmerald [Jul et al., 1988] relies heavily on this type of local/nonlocal determination.

Avoid Stack Allocation: In general, tasks may wait on other tasks or synchro-
nization variables. To avoid wasting processors, we block these tasks and schedule
another task for execution. This requires allocating a separate stack for each task.
When a task will not block, because it accesses no synchronization variables and
creates no tasks, we can avoid allocating a separate stack and use the scheduler’s
stack to execute the task. The Lvnx implementation uses this technique [Scott, 1986;
Scott, 1987].

This optimization is currently available only for the _quick implementations of
range and array iterators. A general implementation of non-blocking tasks is feasible,
but would require re-writing the runtime system.

Non-Preemptive Execution: The Natasha run-time library :educes the synchro-
nization requirements within the runtime by executing tasks until they block or com-
plete.

Last-In-First-Out Scheduling: In executing a program based on our model. we
may think of a tree of parallel tasks where each reply generates a branch in the tree.
Normal FIFO scheduling strategies will traverse this tree of tasks in a breadth-first
manner. In a breadth-first execution, the number of active nodes grows quickly. Their
representation will quickly consume the entire storage of almost any machine.

The typical solution to this problem is to use a LIFO scheduling queue [Halstead,
1990}, which encourages a depth-first execution. The number of active nodes is small,
with O(logn) simultaneous activations. This approach is preferable to the normal FIFO
scheduling. which corresponds to a breadth-first evaluation, which has O(n) simultane-
ous activations.

Stealing Work: When a processor has an empty scheduling queue. it takes tasks from
other processors’ queues. In contrast to Concert Multilisp and Mul-T [Halstead. 1990],
we take tasks least recently enqueued rather than most recently enqueued. Taking the
least recently enqueued tasks leit disturbs of the locality of processors. (This issue
is important in maintaining O(log n) activations, and so the strategy applies to UMA
multiprocessors in addition to NUMA multiprocessors.)

7.2.3 Control Operations

Control abstraction has a high potential cost. This section provides several optimiza-
tions that reduce this cost. In Natasha programs that are structurally similar to pro-
grams in conventional algorithm'~ 1anguages. these optimizations lead to control oper-
ations with similar costs.

S0

In-Line Closures: In Natasha, closures are operations on activation objects. As op-
erations, closures are amenable to all the optimizations that apply to normal operations.
By doing source-level in-lining, and propagating closure parameters to their use within
the definition of a control operations, compilers may substitute closures in-line. In-line
substitution is especially important for the efficient execution of sequential control con-
structs. When the compiler can determine the implementation of a construct statically,
it can replace the invocation with the implementation, and propagate the closure pa-
rameter through to its use. Using this technique, we can convert control constructs
using late replies into equivalent machine branch instructions. The Natasha compiler
currently does not do this optimization. It is the compiler’'s greatest weakness.

Stack Allocation of Closures: Closures in Smalltalk and Lisp require that their
environments remain in existence for the lifetime of the closure. The standard imple-
mentation of closures uses heap allocation for all operation activations that contain
closures. Since the cost of dynamic allocation can be substantial, the widespread use of
closures could have severe performance implications.

There are at least three language-dependent approaches to reducing the cost of clo-
sure environments. The first is to analyze the program to determine if a closure is used
after normal termination of its environment. If not, the compiler may allocate the envi-
ronment on an activation stack (Kranz et al., 1986]. The second approach restricts the
assignment of closures, like Algol68 reference variables, such that the environment is
guaranteed to exist.? The third approach, which we used in our implementation for ex-
pedience, defines programs that invoke a closure after its environment has terminated as
erroneous.? Each of these approaches enables stack allocation for closures, significantly
reducing the overhead associated with their use.

Direct Scheduler Access: Note that the presence of an implementation for a control
construct, such as forall. using our mechanisms does not imply that a programming
system must use the implementation. In particular, implementations of forall are
most efficient when they can directly manipulate scheduler queues. We expect that pro-
gramming systems will provide implementations of common control constructs that are
integrated with the scheduler. The Natasha implementation provides special scheduling
queues for forall constructs.

Task Generators: Control operations, such as forall, may often start many tasks.
The obvious implementation of a sequential loop creating the appropriate number of
tasks involves O(n) work on setting up the loop. An alternate approach places a task
generator on the scheduling queue. The process of grabbing a task involves generating
another task from the description on the queue. This distributes the task creation
overhead among several processors.

?Algol68 does not permit assignment of references to variables outside the local scope, thus ensuring
that the lifetime of a variable containing a reierence is no greater than the lifetime of the referent.

*Asin Ada [U S DoD, 1983]. we use the term erroneous to indicate incorrect programs that the
compiler and runiime need not detect as incorrect,

81

7.2.4 Data Access

The Natasha prototype compiler provides no sophisticated optimizations on data access.
Three optimizations that could be done are:*

Distribute Data: Implementations of Matroshka must provide facilities for building
distributed implementations of data abstractions. Natasha provides several distributed
arrays, which programmers may use to build other distributed types.

Replicate Data: High performance implementations of Matroshka should also pro-
vide mechanisms to replicate data easily. Natasha does not currently provide mecha-
nisms to aid the replication of data, though programmers could do so manually.

Replicate Pointers to Data: Because each object (and record), once constructed,
always contains the same set of objects, the implementation may implement the record
as a list of pointers and ~npy the list freely.

7.3 Performance Evaluation

The Natasha implementation is not production-quality. It does not implement several
optimizations that would be present in production implementations of Matroshka and
are necessary to perform competitively with existing algorithmic languages. To show
that a Natasha implementation could be competitive, we describe the weaknesses in the
prototype implementation, manually apply the missing optimizations to two example
programs, and compare the manually optimized programs to equivalent C programs.

7.3.1 C as an Intermediate Language

The GNU extensions to the C language eased the code generation task considerably.
Even so, the C language has significar.t weaknesses when used as a back end. It intro-
duces several structural inefficiencies in the generated code.

Expressions: The Natasna compiler transtates Natasha expressions directly to C ex-
pressions. Because of Natasha’s port model, the Natasha compiler generates many
references to the variable a with the expression *(&(a)).> While this expression is se-
mantically equivalent to the simplest expression, a, it has the side effect of forcing the
variable to reside in main memory, rather than in registers. This increases the num-
ber of main memory references, which decreases the program performance considerably.
Another effect of the expression «(&(a)) is that it inhibits some forms of constant
expression evaluation.

‘ The operating system can also help manage data access [Bolosky et al., 1989; Tox and Fowler, 1989;
Bolosky et al, 1991].

*While it is possible to perform this optimization with a simple post-processor, the optimization
waould be ineffective if d- ne in 1solation. See section 7.3 2 and figure 7.1.

<

4

Record Constructors: Natasha relies on record constructors to build argument lists.
The compiler uses GCC's struct constructors to represent record constructors and build
ports. Unfortunately, the GCC compiler insists on building such records in main mem-
ory, rather than in registers. This also reduces performance substantially.

Nested Scopes: Natasha provides nested procedures, primarily as closures. However,
(C does not provide nested procedures, so the compiler cannot directly translate Natasha
closures to C procedures. The Natasha compiler represents closure nesting by explicitly
linking together structs containing Natasha activation variables. GCC always allocates
structs in memory. so all Natasha variables will be allocated in memory even though
many should be promoted to registers. This also reduces performance substantially.

Procedure In-Lining: The Natasha compiler takes advantage of GNU’s C compiler
inline pragma on procedures. This pragma instructs the compiler to splice the assem-
hlyv code of the procedure into that of the caller, which removes the procedure prolog and
epilog code. While effective at reducing the cost of procedure calls, assembly in-lining is
not nearly as effective as source in-lining. Because of difference in performance between
~ource and assembly in-lining, Natasha does source in-lining for predefined operations.
For implementaticn expedience, it does not do source in-lining for user operations.

No Coroutines: The C language provides neither coroutines nor access to the stack.
In building Natasha tasks. it became necessary to call an assembly procedure to imple-
ment parameter passing to coroutines and switching to coroutines. The resulting task
invocation then consists of calls to

the manager procedure (possibly in-line),

e the general invocation procedure (placing arguments on the caller’s stack),
e the task allocation procedure,

e the parameter copy procedure,

o the block copy procedure (placing arguments on the callee’s stack),

e the coroutine switch procedure,

e the reply procedure, and

¢ the task deallocation procedure.

There are at least two excess procedure calls and one parameter copy that would not
be necessary if the implementation language directly supported coroutines.

7.3.2 Sequential Execution

Natasha programs take more than twice the time to execute than equivalent C programs.
In an effort to determine if the inadequacy of C as an intermediate language was the
primary component of the difference in execution speed, we wrote a sequential program
using only control constructs that are directly represented in C. The program makes
four million calls to a random number generator. We then manually edited the C code
generated (after the C preprocessor) with four simple optimizations. They are:

1. convert *(&(var)) to var,

2. represent Natasha activation variables as C activation variables (instead of as
members of a struct within the activation),

3. convert *((var = expr), &var) to expr,® and
4. represent Natasha global variables as C global variables.

The resulting execution times appear in figure 7.1. These manual optimizations bring
Natasha execution times to within 2% of comparable C programs. We expect that a
production compiler for Natasha would be competitive with an optimizing C compiler.

100 —

8041 [

60

Seconds

01— |\ —| |—| [—[11— 1—M——0°C

20 —

I | | [|
Optimizations: none 1 2 1,2 1,23 1,234

Figure 7.1: Manual Optimization of Sequential Natasha

®This expression is an artifact of the mismatch between C operators being define on values and
Natasha operators being defined on objects.

84

L--

7.3.3 Parallel Execution

Given that the sequential execution of Natasha programs can be as fast as C programs,
we tested the Natasha program for Gaussian elimination against an existing hand-tuned
C program [LeBlanc, 1988]. We use the same set of problem and program restrictions.
Figure 7.2 shows the unoptimized Natasha program executes much slower than the C
program. The first step in hand optimizing the Natasha program is to apply the opti-

1024

512 — Natasha

Seconds 256-1 T~_

128 = hand-tuned C ~~ .
- -~ - .
64 T T I T =
8 12 16 24 32 48
Processors

Figure 7.2: Initial Performance of Parallel Natasha

mizations of section 7.3.2 to the inner loop, then apply induction variable elimination
to the inner loop. The resulting execution times appear in figure 7.3. In this and future
figures, the dotted lines show the original Natasha and hand-tuned C execution times.
These optimizations help Natasha considerably for fewer processors, but provide no aid
for many processors. The Natasha program is communication limited for large num-
bers of processors. The prototype implementation introduces two unnecessary copies
of the pivot row, one copying from the parameter to the activation record, and the
second in constructing the argument list to the reduction. Removing these redundant
copies results in the times shown in figure 7.4. Two optimizations remain. The first
in-lines closures used in the forpairs control construct. The second copies only the
non-zero portion of the pivot row. This latter optimization requires a language that
can manipulate sub-arrays. Figure 7.5 shows the resulting times. We expect produc-
tion implementations of Natasha to use all these optimizations and therefore perform
competitively with hand-tuned C programs. We do not expect Natasha programs to
outperform hand-tuned C programs. The Matroshka model will provide a performance
advantage only indirectly by making the tuning of parallel programs easier.

85

1024 eee-- simple optimizations
with induction

512 ~

Seconds 256 —

128 —

64 T T T T —
8 12 16 24 32 48
Processors

Figure 7.3: Performance With Inner-Loop Optimization

1024y ee-a- parameter
argument

512 —

Seconds 256 —

128

64 T T T T -
8 12 16 24 32 48
Processors

Figure 7.4: Performance Without Redundant Copies

86

10244 eeae- inline closures
pass sub-array

512 —
Seconds 256 .

128

64 T l l T T
8 12 16 24 32 48
Processors
Figure 7.5: Performance With Final Optimizations

87

S

8 — Conclusions

Though Patience be a tired mare, yet she
will plod. There must be conclusions.

— William Shakespeare, Henry V, 1600

To implement a parallel algorithm, programmers must identify and exploit parallelism,
distribute data and processing, and choose communication. The appropriate imple-
mentation of an algorithm depends heavily on the target architecture. Since parallel
architectures vary widely, implementations of an algorithm will also vary widely.

Architectural adaptability is the ease with which programmers can tune or port a
program to a different architecture. When programmers embed assumptions about the
architecture in the text of programs, the programs are difficult to adapt. We can avoid
unwanted assumptions in programs by separating the specification of an algorithm from
its realization on a given architecture. This separation of use from implementation is
an instance of abstraction. Early work in parallel programming languages provided a
set of predefined abstractions that provided the separation of specification from realiza-
tion. Unfortunately, early languages provided no mechanism for the user to continue
the process of abstraction to represent an application-specific separation. Recent work
emphasizes the use of data abstraction to separate distribution from the rest of the
program.

8.1 Contributions

We extend the use of abstraction in parallel programming for architectural adaptability
to control abstraction. Control abstraction provides several benefits in the construction
of programs that adapt well to different architectures.

e With control abstraction, programmers are not limited to a fixed set of control
constructs. Users can create new constructs that express arbitrary partial orders
of invocations and store them in a library for use by others. We presented a
model of parallel programming based on a small set of primitive mechanisms for
control abstraction and showed how the model can directly implement common
parallel control constructs. With the ability to define algorithm-specific control
constructs, we can more precisely represent the potential parallelism within an
algorithm.

89

e Each control construct can have multiple implementations, each of which exploits
a different subset of the potential parallelism defined by the construct. Select-
ing different implementations of a construct at the points of use exploits different
sources of parallelism within a program. By embedding synchronization in the im-
plementation of control constructs, separate from the program logic, programmers
select parallelism and synchronization simultaneously.

¢ When combining data abstraction with control abstraction, distributed data struc-
tures can co-locate processing with the corresponding data. In this way, program-
mers select distribution once when selecting the data implementation, rather than
twice — with the data structure and separately with the control structure.

e By associating communication with operation invocation, each operation invoca-
tion is a source of potential interprocessor communication. By selecting among
different implementations, we realize interprocessor communication at the appro-
priate points in the program.

We presented a method for using abstraction to achieve architectural adaptability
in explicitly parallel programs. In developing adaptable programs, programmers must
specify the algorithm in terms of data and control abstractions. Programmers adapt
parallel programs by selecting an implementation for each use of an abstraction, and
then experimentally measuring the effect. Programmers can choose among existing
implementations of an abstraction or build new implementations as needed. The set
of implementations will expand during program tuning and porting, leaving different
exploitations documented within the source.

This dissertation shows that control abstraction is an effective means for achiev-
ing architectural adaptability in explicitly parallel imperative programs. In particu-
lar, control abstraction is the fundamental form of abstraction needed for architectural
adaptability. In addition, we presented several optimizations that provide an efficient
implementation of data and control abstraction. Based on our experience, we believe
the benefits and reasonable cost of control abstraction argue for its inclusion in explicitly
parallel programming languages.

8.2 Future Work

While the benefits of control abstraction for architectural adaptability are clear, con-
cerns of applicability to full production environments remain. Future work in this area
must address these concerns.

The prototype implementation described served adequately for this dissertation.
However, production use of control abstraction for architectural adaptability will re-
quire production implementations of Matroshka. Issues remaining include efficient task
management, data replication, and data distribution.

The cost of programming with control abstraction is not clear. To gain further
understanding of the costs and benefits involved in the heavy use of control abstraction
in parallel programming, we need to experiment with full production applications.

90

The generic and polymorphic type support needed for control abstraction appears
to be greater than that for data abstraction alone. The extent of the support needed is
not clear.

The programming method presented in this dissertation relies on a library of data
and control abstraction. We do not yet know how to build comprehensive libraries of
data and control abstractions.]

These open issues concern programming-in-the-large. As such, the effort necessary
to address them properly is significant.

91

Bibliography

[Agha, 1986a] Gul A. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems, MIT Press, Cambridge, Massachusetts, 1986.

[Agha, 1986b] Gul A. Agha, “An Overview of Actor Languages,” ACM SIGPLAN
Notices, 21(10):58-67, October 1986.

[Albert et al., 1988] Eugene Albert, Kathleen Knobe, Joan D. Lukas, and Guy L. Steele,
Jr., “Compiling Fortran 8x Array Features for the Connection Machine Computer
System,” In Proceedings of the ACM/SIGPLAN PPEALS 1988, pages 42-56, July
1988, appeared in ACM SIGPLAN Notices 23(9), September 1988.

[Allen et al.,, 1987] Randy Allen, David Callahan, and Ken Kennedy, “Automatic De-
composition of Scientific Programs for Parallel Execution,” In Conference Record of
the Fourteenth Annual ACM Symposium on Principles of Programming Languages,
pages 63-76, January 1987.

[Alliant, 1987] Alliant Computer Systems Corporation, One Monarch Drive, Littleton,
Massachusetts 01460, ALLIANT FX/Series Product Summary, June 1987.

[Alliant, 1989] Alliant Computer Systems Corporation, One Monarch Drive, Littleton,

Massachusetts 01460, Concentriz System Reference: System Calls and C Library
Routines, February 1989.

[Alverson, 1990] Gail A. Alverson, Abstraction for Effectively Portable Shared Mem-
ory Parallel Programs, PhD thesis, Departmert of Computer Science, University of
Washington, October 1990, Technical Report 90-10-09.

[Alverson and Notkin, 1991] Gail A. Alverson and David Notkin, “Abstracting Data-
Representation and Partition-Scheduling in Parallel Progams,” In Proceedings of the
International Symposium on Shared Memory Multiprocessing, Tokyo, Japan, April
1991.

[Andrews et al.. 1988] Gregory R. Andrews, Ronald A. Olsson, Michael H. Coffin, Irv-
ing J. P. Elshoff, Kelvin Nilsen, Titus Purdin, and G. Townsend, “An Overview of the
SR Language and Implementation.” ACM Transactions on Programming Languages
and Systems, 10(1):51-86, January 1988.

93

[Andrews et al., 1986] Gregory R. Andrews, Ronald A. Olsson, Michael H. Coffin, Irv-
ing J. P. Elshoff, Kelvin Nilsen, and Titus Purdin, “An Overview of the SR Language
and Implementation,” Technical Report 86-6a, Department of Computer Science,
University of Arizona, Tuscon, Arizona, 85721, June 1986.

[BBN, 1985a] BBN Laboratories, Cambridge, Massachusetts, Butterfly Parallel Proces-
sor Overview, June 1983.

[BBN, 1985b] BBN Laboratories, Cambridge, Massachusetts, Chrysalis Programmer’s
Manual, June 1985.

[BBN, 1985¢c] BBN Laboratories, Cambridge, Massachusetts, The Uniform System Ap-
proach To Programming the Butterfly Parallel Processor, October 1985.

(BBN, 1987] BBN Laboratories, Cambridge, Massachusetts, Inside the Butterfly Plus,
October 1987.

[Bell and Newell, 1971] C. G. Bell and A. Newell, Computer Structures: Readings and
Eramples, McGraw-Hill Book Company, New York, 1971.

[Bentley, 1982] Jon Louis Bentley, Writing Efficient Programs, Software Series.
Prentice-Hall Inc., 1982.

[Black et al., 1986a] Andrew P. Black, Norman Hutchinson, Eric Jul, and Henry Levy,
“Object Structure in the Emerald System,” In Proceedings of 1986 Conference on
Object-Oriented Programming Languages, Systems and Applications, pages 78-86,
September 1986, appeared in ACM SIGPLAN Notices 21(11), November 1986.

[Black et al., 1986b] Andrew P. Black, Norman Hutchinson, Eric Jul, Henry Levy, and
Larry Carter, “Distribution and Abstract Types in Emerald,” IEEE Transactions
on Software Engineering, December 1986.

(Bolosky et al., 1989] William J. Bolosky, Robert P. Fitzgerald, and Michael L. Scott,
“Simple but effective techniques for NUMA memory management,” In Proceedings of
the Twelfth ACM Symposium on Operating Systems Principles, pages 19-31, Litch-
field Park, Arizona, December 1989, also appeared in Operating Systems Review
23(5), December 1989.

[Bolosky et al., 1991] William J. Bolosky, Michael L. Scott, Robert P. Fitzgerald,
Robert J. Fowler, and Alan L. Cox, “NUMA Policies and Their Relation to Memory
Architecture,” In Proceedings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 212-221, Santa
Clara, California, April 1991.

[Brinch Hansen, 1975] Per Brinch Hansen, “The Programming Language Concurrent
Pascal,” [EEFE Transactions on Software Engineering, SE-1:199-207, June 1975.

(Brinch Hansen, 1978] Per Brinch Hansen, “Distributed Processes: A Concurrent Pro-
gramming Concept,” Communications of the ACM, 21(11):934-941, November 1978.

94

.

i N N o B MR S N am

[Budd, 1984] Timothy A. Budd, “An APL Compiler for a Vector Processor,” ACM
Transactions on Programming Languages and Systems, 6(3):297-313, July 1934,

(Bukys, 1986) Liudvikas Bukys, “Connected Component Labeling and Border Following
on the BBN Butterfly Parallel Processor,” Butterfly Project Report 11, Computer
Science Department, University of Rochester, October 1986.

(Burks et al., 1946] A. W. Burks, H. H. Goldstine, and J. von Neumann, “Preliminary
Discussicn of the Logical Design of an Electronic Computing Instrument,” Report
prepared for the U. S. Army Ordnance Department, 1946, Reprinted in [Bell and
Newell, 1971, pages 92-119].

(Burton, 1984] F. Warren Burton, “Annotations to Control Parallelism and Reduction
Order in the Distributed Evaluation of Functioral Programs,” ACM Transuctions on
Programming Languages and Systems, 6(2):159-174, April 1984,

(Coffin, 1989] Michael H. Coffin, “Par: A Language fc- Architecture-Independent Par-
allel Programming,” Technical Report 89-18, Department of Computer Science, Uni-
versity of Arizona, September 1989.

(Coffin, 1990] Michael H. Coffin, “An Approach to Architecture-Independent Parallel
Programming,” April 1990, seminar presented at the University of Rochester.

[Coffin and Andrews, 1989] Michael H. Coffin and Gregorv R. Andrews, “Towards
Architecture-Independent Parallel Programming,” Technical Report 89-21a, Depart-
ment of Computer Science, University of Arizona, September 1989.

[Cook. 1980] Robert P. Cook, “*MOD—A Language for Distributed Programming,”
IEEE Transactions on Seftware Engineering, SE-6(6):563-571, November 1980.

[Costanzo et al., 1986] John Costanzo, Lawrence Crowl, Laura Sanchis, and Mandayam
Srinivas, “Subgraph Isomorphism on the BBN Butterfly Multiprocessor,” Butterfly
Project Report '4, Computer Science Department, University of Rochester, October
1986.

[Cox and Fowler, 1989] Alan L. Cox and Robert J. Fowler, “The Implementation of a
Coherent Memory Abstraction on a NUMA Multiprocessor: Experiences with PLAT-
INUM,” In Proceedings of the Twelfth ACM Symposium on Operating Systems Prin-
ciples, pages 32-44, Litchfield Park, AZ, December 1989, also appeared in Operating
Systems Review 23(5), December 1989.

[Crowther et al., 1985] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken,
and T. Blackadar, “Performance Measurements on a 128-Node Butterfly Parallel
Processor,” In Proceedings of the International Conference on Parallel Processing,
pages 531-540, August 1985.

(Ellis, 1982] Carla S. Ellis, “Extendible Hashing for Concurrent Operations in Dis-
tributed Data,” Technical Report 110, Computer Science Departm~nt, University of
Rochester. October 19%2.

95

(Ellis, 1985] Carla S. Ellis, “Concurrency and Linear Hashing,” Technical Report 151,
Computer Science Department, University of Rochester, March 1985.

eldman, 1979] Jerome A. Feldman, igh Level Programming for Distributed Com-
Feld J A. Feld “High Level P ing for Distributed C
puting,” Communications of the ACM, 22(6):353-368, June 1979.

[Fowler et al., 1988] Robert J. Fowler, Thomas J. LeBlanc, and John M. Mellor-
Crummey, “An Integrated Approach to Parallel Program Debugging and Performance
Analysis on Large-Scale Multiprocessors,” In Proceedings of the ACM SIGPLAN and
SIGOPS Workshop on Parallel and Distributed Debugging, pages 163-173, May 1988.

[Gilman and Rose, 1976] Leonard Gilman and Allen J. Rose, APL: An Interactive Ap-
proach, John Wiley & Sons, New York, second edition, 1976.

[Goldberg and Robson, 1983] Adele Goldberg and David Robson, Smalitalk-80, The

Language and Its Implementation, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1983.

[Goldman et al., 1990] Ron Goldman, Richard P. Gabriel, and Carol Sexton, “Qlisp:
An Interim Report,” In Takayasu Ito and Robert H. Halstead, Jr., editors, Parallel
Lisp: Languages and Systems, number 441 in Lecture Notes in Computer Science,
pages 161-181. Springer-Verlag, 1990, the Proceedings of the US/Japan Workshop
on Parallel Lisp, Sendai, Japan, June 1989.

(Greif et al., 1986] I. Greif, R. Seliger, and W. Weihl, “Atomic Data Abstractions in
Distributed Collaborative Editing Systems,” In Proceedings of the Thirteenth ACM
Symposium on Principles of Programming Languages, January 1986.

[Halstead, 1985] Robert H. Halstead, Jr., “Multilisp: A Language for Concurrent Sym-

bolic Computation,” ACM Transactions on Programming Languages and Systems,
7(4):501-538, October 1985.

[Halstead, 1990] Robert H. Halstead, Jr., “New Ideas in Parallel Lisp: Language Design,
Implementation, and Programming Tools,” In Takayasu Ito and Robert H. Halstead,
Jr., editors, Parallel Lisp: Languages and Systems, number 441 in Lecture Notes
in Computer Science, pages 2-57. Springer-Verlag, 1990, the Proceedings of the
US/Japan Workshop on Parallel Lisp, Sendai, Japan, June 1989.

(Harrison and Notkin, 1990] Gail Harrison and David Notkin, “Effective Parallel Porta-
bility,” Technical Report 89-09-08 (revised), Department of Computer Science and
Engineering, University of Washington, January 1990.

{Hewitt and Atkinson, 1977] C. Hewitt and R. Atkinson, “Parallelism and Synchro-
nization in Actor Systems,” In Proceedings of the Fourth Symposium on Principles
of Programming Languages, pages 267-280, Los Angeles, California, January 1977.

[Hewitt, 1977] Carl Hewitt, “Viewing Control Structures as Patterns of Passing Mes-
sages.” Journal of Artificial Intelligence, 8(3):323-364, June 1977.

06

[Hilfinger, 1982] Paul N. Hilfinger, Abstraction Mechanisms And Language Design,
ACM Distinguished Dissertation. MIT Press, 1982.

[Hudak, 1986] Paul Hudak, “Para-Functional Programming,” Computer, 19(8):60-70,
August 1986.

[Hudak, 1988] Paul Hudak, “Exploring Parafunctional Programming: Separating the
What from the How,” IEEFE Software, 5(1):54-61, January 1988.

[Hutchinson, 1987] Norman C. Hutchinson, “Emerald: An Object-Based Language for
Distributed Programming,” Technical Report 87-01-01, Department of Computer
Science, University of Washington, January 1987.

[Jensen and Wirth, 1975] Kathleen Jensen and Niklaus Wirth, Pascal User Manual and
Report, Springer-Verlag, New York, second editicn, 1975.

(Jul et al., 1988] Eric Jul et al., “Fine-Grained Mobility in the Emerald System,” IEEE
Transactions on Software Engineering, 6(1), February 1988.

[Kernighan and Ritchie, 1978] Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language, Prentice-Hall Inc., Englewood Cliffs, New Jersey 07632.
1978.

[Kranz et al., 1986] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James
Philbin, and Norman Adams, “ORBIT: An Optimizing Compiler for Scheme,” In
Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction, pages 219-
233, June 1986, in SIGPLAN Notices 21(7), July 1986.

[Lampson and Redell, 1980] Butler W. Lampson and David D. Redell, “Experience
with Processes and Monitors in Mesa,” Communications of the ACM, 23(2):105-118,
February 1980.

(LeBlanc, 1986] Thomas J. LeBlanc, “Shared Memory Versus Message-Passing in a
Tightly-Coupled Multiprocessor: A Case Study,” In Proceedings of the 1986 In-
ternational Conference on Parallel Processing, pages 463-466, August 1986, also
appeared as Butterfly Project Report 3, Computer Science Department, University
of Rochester, January 1986.

[LeBlanc, 1988] Thomas J. LeBlanc, “Problem Decomposition and Communication
Tradeoffs in a Shared-Memory Multiprocessor,” In Martin Schultz, editor, Numerical
Algorithms for Modern Parallel Computer Architectures, number 13 in IMA Volumes
in Mathematics and its Applications, pages 145-163. Springer-Verlag, 1988.

[LeBlanc et al., 1990] Thomas J. LeBlanc, John M. Mellor-Crummey, and Robert J.
Fowler, “Analyzing Parallel Program Executions Using Multiple Views,” Journal of
Parallel and Distributed Computing, 9(2):203-217, June 1990.

[Liskov, 1979] Barbara H. Liskov, “Primitives for Distributed Computing,” In Proceed-
ings of the Seventh ACM Symposium on Operating Systems Principles, pages 33-42.
Association for Computing Machinery, December 1979.

(Liskov et al., 1986] Barbara H. Liskov, Maurice P. herlihy, and Lucy Gilbert, “Limi-
tations of Synchronous Communication with Static Process Structure in Languages
for Distributed Computing,” In Conference Record of the Thirteenth Annual ACM
Symposium on Principles of Programming Languages, pages 150-159, January 1986.

[Liskov and Scheifler, 1983] Barbara H. Liskov and Robert Scheifler, “Guardians and
Actions: Linguistic Support for Robust, Distributed Programs,” ACM Transactions
on Programming Languages and Systems, 5(3):381-404, July 1983.

[Liskov et al., 1977] Barbara H. Liskov, Alan Snyder, R. R. Atkinson, and J. C. Schaf-
fert, “Abstraction Mechanisms in CLU,” Communications of the ACM, 20(8):564-
576, August 1977.

[Low, 1976] James R. Low, Automatic Coding: Choice of Data Structures, Number 16
in Interdisciplinary Systems Research. Birkhiuser Verlag, Basel and Stuttgart, 1976.

[Mellor-Crummey, 1989] John M. Mellor-Crummey, “Debugging and Analysis of Large-
Scale Parallel Programs,” Technical Report 312, Computer Science Department,
University of Rochester, September 1989, Ph.D. Dissertation.

[Miller and Stout, 1989] Russ Miller and Quentin F. Stout, “An Introduction to the
Portable Parallel Programming Language Seymor,” In Proceedings of the Thirteenth
Annual International Computer Software and Applications Conference, pages 94-101.
IEEE Computer Society, September 1989.

(Murtagh, 1983] T. P. Murtagh, A Data Abstraction Language for Concurrent Pro-
gramming, PhD thesis, Cornell University, Computer Science Department, January
1983.

[Parnas and Siewiorek, 1975} D. L. Parnas and D. P. Siewiorek, “Use of the Concept of

Transparency in the Design of Hierarchically Structured Systems,” Communications
of the ACM, 18(7):401-408, July 1975.

[Polychronopoulos, 1988] Constantine D. Polychronopoulos, Parallel Programming and
Compilers, Kluwer Academic Publishers, 1988.

[Quiroz, 1991] César A. Quiroz, “Systematic Detection of Parallelism in Ordinary
Programs,” Technical Report 351, Computer Science Department, University of
Rochester, May 1991, Ph.D. Dissertation.

[Sabot, 1988] Gary Wayne Sabot, The Paralation Model: Architecture-Independent
Parallel Programming, MIT Press, 1988.

(Sarkar, 1990] Vivek Sarkar, “PTRAN — The IBM Parallel Translation System,” Tech-
nical Report RC-70566, Research Division, IBM T. J. Watson Research Center, York-
town Heights, New York, May 1990.

[Sarkar and Hennessy, 1986] Vivek Sarkar and J. Hennessy, “Compile-time Partitioning
and Scheduling of Parallel Programs,” In Proceedings of the SIGPLAN 86 Symposium
on Compiler Construction, pages 17-26, July 1986.

98

[Scott, 1986] Michael L. Scott, “The Interface Between Distributed Operating System
and High-Level Programming Language,” In Proceedings of the 1986 International
Conference on Parallel Processing, pages 242-249, August 1986.

[Scott, 1987] Michael L. Scott, “Language Support for Loosely-Coupled Distributed
Programs,” IEEE Transactions on Software Engineering, SE-13(1):88-103, January
1987.

[Scott et al., 1990] Michael L. Scott, Thomas J. LeBlanc, and Brian D. Marsh, “Multi-
Model Parallel Programming in Psyche,” In Proceedings of the Second ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP),
pages 70-78, Seattle, WA, March 1990, appeared in ACM SIGPLAN Notices 25(3).

[Snyder, 1984] Lawrence Snyder, “Parallel Programming and the Poker Programming
Environment,” Computer, 17(7):27-36, July 1984.

[Snyder, 1986] Lawrence Snyder, “Type Architectures, Shared Memory and the Corol-
lary of Modest Potential,” Technical Report 86-03-04, Department of Computer
Science, University of Washington, Seattle, Washington, March 1986.

[Stallman, 1989] Richard M. Stallman, Internals of GNU CC, April 1989.
[Steele, 1984] Guy L. Steele, Jr., Common Lisp: The Language, Digital Press, 1984.

[Steele and Hillis, 1986] Guy L. Steele, Jr. and W. D. Hillis, “Connection Machine
Lisp: Fine-Grained Parallel Symbolic Processing,” In Proceedings of the 1986 ACM
Conference on Lisp and Functional Programming, pages 279-297, August 1986.

[Strom et al., 1991] Robert E. Strom, David F. Bacon, Arthur P. Goldberg, Andy
Lowry, Daniel M. Yellin, and Shaula Alexander Yemini, Hermes: A Language for
Distributed Computing, Prentice-Hall Inc., 1991.

[Strom and Yemini, 1983] Robert E. Strom and Shaula Alexander Yemini, “NIL: An
Integrated Language and System for Distributed Programming,” Research Report
RC 9949, International Business Machines Corporation Research Division, April 1983.

[Stroustrup, 1986] Bjarne Stroustrup, “An Overview of C++4,” ACM SIGPLAN No-
tices, 21(10):7-18, October 1986.

[Thimbleby, 1988] Harold Thimbleby, “Delaying Commitment,” IEEE Software,
5(3):78-86, May 1988.

[Thomas, 1985] R. Thomas, “Using the Butterfly to Solve Simultaneous Linear Equa-
tions,” Butterfly Working Group Note 4, BBN Laboratories, March 1985.

[Thomas, 1986] R. Thomas, “The Uniform System Approach to Programming the But-
terfly Parallel Processor,” BBN Report No. 6149, BBN Advanced Computers Inc.,
June 1986.

(U.S. DoD, 1983] United States Department of Defense, Washington D. C., Reference
Manual for the Ada Programming Language, June 1983, ANSI/MIL-STD-1815A.

99

[Cllman, 1976] J. R. Ullman, “An Algorithm for Subgraph Isomorphism,” Journal of
the ACM, 23:31-42, 1976.

[Wirth, 1982] Niklaus Wirth, Programming in Modula-2, Springer-Verlag, Berlin, sec-
ond edition, 1982.

(Wolfe, 1989] Michael J. Wolfe, Optimizing Supercompilers for Supercomputers, MIT
Press, 1989.

[Xerox, 1984] Xerox Corporation, Palo Alto, California, Mesa Language Manual,
November 1984.

100

A — Natasha Prototype Language

Better is the enemy of good enough.}

Natasha (Hardwa) is a proof-of-concept language for the Matroshka (Marpémra) par-

allel programming model. Natasha is not a development quality language. Since the
primary reason for parallel programming is faster problem solution time, efficiency is
a significant concern. To support efficient execution, Natasha is a statically typed
language. This enables Natasha implementations to obtain performance comparable
to Pascal, Fortran, and C. Some Natasha mechanisms have several different imple-
mentations, each appropriate to different parallelism, distribution, and communication.
Natasha is an object-based language, but is not an object-orient.d language because it
provides no inheritance. The Matroshka mechanisms for parallelism are orthogonal to
inheritance, so a prototype language need not contain inheritance.

A.1 Syntax

This section contains the formal definition of the Natasha syntax. The syntax notation
uses = for non-terminal definition, { } for repetitions of zero or more, [] for optional
items, and | for alternatives. Within the definition of a non-terminal, text in ‘roman
font’ represents non-terminal symbols, text in ‘typewriter font’ represents terminal
svmbols, and text in ‘italic font’ is descriptive commentary.

A.1.1 Tokens

Natasha programs are composed of a sequence of lexical tokens, each composed of a
sequence of characters. In reading the program text, the parsing algorithm will extend
the length of its current token if it can. Otherwise, it will consider the token complete
and start another token. That is, tokens will be as long as possible. Except within
quoted strings, a space or line break will force the parser to start a new token.

Natasha programs are first passed through the C preprocessor. This means pro-
grammers should ensure that any ‘#’ character at the beginning of a line is intended for
the preprocessor.

'This appears to be an adaptation of Voltaire’s “Le mieuz est l'ennems du bien [The best is the
enemy of the good|™, 1764.

101

Comments start with the characters *;;’ and extend to the end of the line. Com-
ments are equivalent to white space.

Natasha tokens fall into two categories, simple and complex. The simple tokens each
consist of a single string. Table A.1 lists these tokens. The complex tokens are strings

token purpose token purpose
declare variable ; terminate statement
construct port ' invoke port

. suppress making reference ys suppress making copy
(and] delimit record constructor | [[and J1 delimit record type
(and) delimit expression {and } delimit statements
¢ and > delimit sub-names

Table A.1: Simple Tokens

of characters from certain restricted classes. Table A.2 lists the character classes, and

digit = 0-9

letter =A-Z]|a-z

alnum = digit | letter | _| §

operch =-|@[#|%] [&ls[+|"|=l<|>]?]/]:]1
nql = any character except "' or newline

Table A.2: Character Classes

table A.3 lists the complex token definitions. For example, a letter followed by a sequence

character = \ any-character-except-newline
identifier = letter { alnum }

integer = digit { digit }

operator = operch { operch }

string ="{nql}"{"{nql}"}
pragma = $ alnum { alnum }

Table A.3: Complex Tokens

of letters, numbers, and underscores forms an identifier. Some identifiers are reserved
to the syntax or predefined as literals. Table A.4 lists them. Natasha provides minimal
support for generic types via a composite names. A name consists of an identifier
optionaliy followed by a left single quote ‘*’, a sequence of names or integers, and a
right single quote ‘’°. The names within single quotes are called subnames.

Table A.5 presents the Natasha grammar. The elements of this grammar are de-
scribed later.

102

S N WE BN BN D EE B N NG AR BN VW BN WA 9 Em AR W

identifier purpose
closure declare closure
cast reply casting to type of object
false Boolean literal
forward forward declaration of object methods
method declare object operation methods
object declare object types
operator declare operator for an operation
reply provide reply value for operation
true Boolean literal
Table A.4: Reserved Identifiers
name = identifier [* subname { subname }]
subname = integer | name
primary = boolean | character | integer | string | closure | record
| (expression) | name [,,]
reference = name | expression | ,]
expression = primary | expression ! primary | reference . identifier
| reference operator object | reference operator
variable = name : expression ;
record = [{ variable }]
field = identifier : name ; | identifier : rec-type ;
rec-type = [[{ field } 1]
execution = expression ;
reply = reply expression ; | cast expression ;
statements = { variable | execution }
parameter = | identifier : name | rec-type
body = parameter { { pragma } statements [reply statements] }
closure = closure body
method = method identifier body
| method identifier parameter forward result-type-name ;
oper-def = operator binary-operator . identifier ! ;
| operator unary-operator . identifier t [] ;
obi-tvpe = object identifier parameter
| { { pragma } { variable | execution | method | operdef } } ;
type-decl = name : rec-type ; | name : obj-type ;
program = { type-decl | execution }

Table A.5: Grammar

103

A.2 Types

Natasha relies on type objects to define the tvpe of objects. Type objects usually have
a ‘new’ operation, which returns instances of common programming types, such as
integers. There is no way to name the type objects for type objects. Natasha recognizes
certain generic types that are inherent to the language. In addition, it predefines some
common simple types, and some synchronization types.

A.2.1 Inherent Types

The Natasha language does not support user-defined generic types. However, the lan-
guage does recognize some generic types inherent to the structure of the language.
Programmers name these types with the composite name mechanism.

Records compose objects into a larger object. The field identifiers and types together
define the type of the record. They are structurally equivalent. Section A.4
presents the means for naming record types. There is one name for each struc-
turally distinct record type. Natasha predefines the name ‘empty’ to refer to the
tvpe object for an empty record, i.e. one with no components. This is the “empty”
or “bottom” type of the language.?

References are pointers to objects of a given type. Name reference types with
‘refer‘type-name’’.

Ports provide the target for operation invocation. The types of the operation’s pa-
rameter and result define the type of the port. Note that the type of the op-
eration’s object does not contribute to the port’s type. Name port types with
‘port ‘ parameter-type-name result-type-name’’.

Arrays provide for fixed-length homogeneous lists. The number and type of the ele-
ments defines the array’s type. Name array types with ‘array‘integer-number-
elements element-type-name’’. The annotations _DIVIDED and _MODULAR specify
distribution of elements among processors.

Table A.6 lists the operations on inherent types. Table A.7 lists the operations on
their types.

A.2.2 Simple Types

Natasha provides literal values for four predefined simple types: ‘boolean’, ‘integer’,
‘character’, and ‘string’. The literals for booleans are ‘true’and ‘false’. A sequence
of one or more digits forms an integer. The range of integers is from —2147483648 to
2147483647. The result of two operations applied simultaneously to the same object
are undefined, that is, operations are not atomic. A backslash ‘\’ followed immediately
by another character, except a newline, is the literal for that character. Natasha also
predefines the variables newline, which initially contains the newline character, and

?There is no “top” type.

104

object tyvpe name operator parameter type result type

record copy] empty record

record assign = record empty

refer ‘name’ copy ¢ empty refer ‘name’
refer ‘name’ assign 1= refer ‘name’ empty

port ‘param result’ copy ¢ empty port ‘param result’
port‘paramresult’ assign = port ‘param result’ empty
array'integer elem’ copy e empty array ‘integer elem’
array ‘integer elem’ assign = array 'integer elem’ empty
array‘integer elem’ select? # integer refer ‘elem’
array‘integer elem’ forall® port‘integer empty’ empty

array ‘integer elem’ sequfor® port‘integer empty’ empty

®Returns a reference to the element, not a copy.

®A parallel iterator for the array. The annotations are _SEQUENTIAL (the default) and _PARALLEL.
The additional annotation _QUICK specifies the non-blocking version of _PARALLEL. The argument port

must not block.

“A sequential iterator for the array.

Table A.6: Operations on Inherent Objects

object type name operator parameter type result type
record-type copy ¢ empty record-type
reference-type copy] empty reference-type
port-type copy L empty port-lype

array-type copy € empty array-type
array-type new’ port‘integer name’ array ‘integer name’

®The array sequentially initializes its elements with the values returned from invoking the port with
indices in the range 0...integer — 1.

Table A.7: Operations on Inherent Type Objects

105

endfile, which initially contains a character signaling the end f a file. A string is
composed of a sequence of any characters, except the double quote and newline, enclosed
by double quotes. The presence of a literal in the program yields a new object for each
elaboration of the source.

The Natasha language predefines additional types that receive no special treatment
in the language syntax or semantics, but for which the compiler or runtime library has
special knowledge or implementations. The ‘range’ type provides for iteration over an
integer range.

Table A.8 lists the operations on boolean and integer objects. Table A.9 lists the
operations on character, string, and range objects. Table A.10 lists the operations on
their types objects. Natasha predefines the boolean, integer, character, and range
variables to refer to these objects.

A.2.3 Synchronization Types

Since the Matroshka model does not provide synchronization between operations, the
Natasha language must add mechanisms to synchronize. The ‘semaphore’, ‘condition’,
and ‘crew’ types provide synchronization. Operations on these objects are atomic. Note
that there are no copy or assign operations on synchronization objects.

The Natasha implementation provides a print lock so that Natasha programs and
the implementation can print without interleaving their output. The implementation
predefines the printlock variable which contains a print lock object. There is no way
to name the print lock type object. Operations on printlock are atomic.

Table A.11 lists the operations on synchronization objects. Table A.12 lists the
operations on their types objects. Natasha predefines the semaphore, condition, and
crew variables to refer to these objects.

A.3 Variables

Variables serve to capture objects for later use. Variables contain objects, that is, the
variables adhere to the value or copy model. A variable name refers to an object within
the least containing scope that defines that variable. More specifically, a variable name
is a litera] value for a reference to the corresponding object. Because of the copy model
of variables, two different simple variables names must refer to two different objects. All
variable declarations have an initializing expression, which implicitly defines the type
of the variable.
Variable declarations have the form:

variable-name : expression ;
For example,

letters: 26;

defines the variable ‘letters’ with the initial value ‘26’, which is an integer, so the
variable’s type is integer.

106

A

object type name operator parameter type result type
boolean copy < empty boolean
boolean assign 1= boolean empty
boolean and x boolean boolean
boolean or] boolean boolean
booclean not - empty boolean
boolean ife port ‘empty empty’ empty
boolean ifelse’ {[then:port‘empty empty’; empty
Else:port ‘empty empty’;]]

boolean print© empty empty
boolean read? empty empty
integer copy Q empty integer
integer assign := integer empty
integer assign_add’ =+ integer empty
integer assign_subtract/ == integer empty
integer add + integer integer
integer subtract - integer integer
integer multiply * integer integer
integer divide / integer integer
integer modulo % integer integer
integer negate - empty integer
integer absolute empty integer
integer equal = integer boolean
integer not_equal "= integer boolean
integer greater > integer boolean
integer greater_equal >= integer boolean
integer less < integer boolean
integer less_equal < integer boolean
integer print integer? empty
integer read” empty empty

®Invoke the argument port if the object is true.

®Invoke the then port if the object is true, otherwise invoke the Else port.

‘Print Tor F.

9Read T or F and set the object.

®Assign after add.

! Assign after subtract.

9The argument is the minimum field width.

"Read and set the object.

Table A.8: Operations on Boolean and Integer Objects
107

object type name operator parameter type result type
character copy ¢ empty character
character assign 1= character empty
character equal = character boolean
character not_equal o= character boolean
character greater > character boolean
character greater_equal >= character boolean
character less < character boolean
character less_equal <= character boolean
character print empty empty
character read? empty empty
string copy ¢ empty string
string assign = string empty
string print empty empty
range copy Q enpty range
range assign 1= range empty
range sequforb port'integer empty’ empty
range forall® port‘integer empty’ empty

%Read and set the object.

*Invoke the port sequentially for each integer in the range.

“Invoke the port for each integer in the range. The annotations are _SEQUENTIAL (the default},
_PARALLEL (parallel with no distribution), _DIVIDED (parallel with divided distribution), and _MODULAR
(parallel with modular distribution). The additional annotation _QUICK specifies a non-blocking imple-

mentation for non-sequential implementations. The argument port must not block.

Table A.9: Operations on Character, String, and Range Objects

object type name operator parameter type result type
boolean-type copy empty boolean-type
baolean-type while® [{cond:port‘empty boolean’; empty
body:port ‘empty empty’;]]
boolean-type repeat® port‘empty empty’ empty
integer-type copy empty integer-type
character-type copy empty character-type
character-type new® integer character
string-lype copy empty string-lype
range-type copy empty range-type
range-type new? ([from:integer; empty

to:integer;]]

®Invoke the cond port and if it returns true, invoke the body port and repeat.
*Invoke the argument port and repeat if it returns true.
“Returns a character with the given ASCII code.

dCreate a range inclusive of from and to.

108

Table A.10: Operations on Simple Type Objects

object type name operator parameter type result type
semaphore signal empty empty
semaphore wait empty empty
condition signal empty empty
condition wait empty empty
crew start_raad® empty empty
crew end_read empty empty
crew start_write® empty empty
crew end_vrite empty empty
printlock signal empty empty
printlock vait empty empty

*Cumrpietes when no writer is active.

®Completes when no reader or writer is active.

Table A.11: Operations on Synchronization Objects

object type name operator parameter type result type
semaphore-type copy Q empty semaphore-type
semaphore-type new integer® semaphore
condition-type cony o empty condition-type
condition-type new empty condition
crew-type copy 0 empty crew-lype
crew-type newv empty crev

*The number of initial signals.

Table A.12: Operations on Synchronization Type Objects

109

A.4 Records

A record collects several objects into a single object. A set of variable declarations
surrounded by brackets ‘[’ and ‘]’ specifies a record constructor. The expressions
within the variable declarations of a record constructor are evaluated within the scope
visible to the record constructor. For example,

{ from: 3; to: 8;]

when executed, constructs a record with an integer ‘from’ component containing ‘3’ and
the ‘to’ component containing ‘8’.

A record need not contain any components. The expression ‘[]’ denotes these empty
records.

The form for specifying a record type is similar to that of a record constructor. A
sequence of component specifiers surrounded by double brackets ‘[[’ and ‘1]’ specifies
a record type. Each component specifier consists of a name followed by a colon, a type
name or another record type specifier, and a semi-colon. For example,

([from: integer; to: integer; 1]

specifies the record type for the above record constructor.

The name ‘empty’ is equivalent to the record specification ‘[[]]'. This name is
needed for compound names because record specifiers cannot appear in names. Pro-
grammers may define names for their own record types by defining a variable with the
record type as its value. For example,

bounds: [[from: integer; to: integer; 1];

A.5 Expressions

Expressions produce free-floating objects, or values. These values exist for the lifetime
of their use within enclosing expressions. Each literal in an expression provides a new
instance of the corresponding type for each execution of the expression.

Expressions are composed of two major primitives: the make-port primitive ‘.’ forms
a port, and the apply ‘!’ primitive invokes an operation by applying an parameter to
a port. Both ‘.’ and ‘!’ are left associative and have 2qual priority. Expressions are
evaluated sequentially. The components of an expression are not evaluated concurrently.

A.5.1 Make Port

A

The make-port primitive ‘.’ takes an object reference on its left and an operation
identifier on its right and returns a port object. The operation identifier and the type
of the object reference uniquely determine the object to invoke.

If the left operand of make-port is an identifier, a reference to the corresponding
variable in the least enclosing scope becomes part of the port. For example, ‘foo.print’
makes a port from the ‘print’ operation and the object reference produced by the ‘foo’
identifier.

110

A
\
|

If the left operand of make-port is an expression, a reference to the expression’s
result becomes part of the port. For example, ‘(3+4).print’ makes a port from the
‘print’ operation and a object reference dynamicly created to refer to the resuit of the
expression ‘(3+4)".

In the case that an expression returns a reference, the automatic reference formation
for expressions would normally create a indirect reference, which is not normally desired.
This automatic creation of a reference can be suppressed with the ¢,’ primitive, which
follows the expression and precedes the ‘.’. For example, given that the expression ‘a#3’
returns a reference to the third element of an array, the expression ‘a#3, .print’ make
a port from that reference and the ‘print’ operation.

A.5.2 Apply Argument

LN

The apply primitive takes a expression yielding port on the left, takes an argument
object on the right, applies the argument to the port, and returns the result of the
corresponding operation invocation. For example, ‘a.add!3’ applies the argument ‘3’
to the port *a.add’ and returns the result.

If an identifier appears on either the right or left of the ‘!’ primitive, the ‘copy’
operation is implicitly applied to the corresponding variable and the result is used in
the intended invocation. The ¢, ,’ primitive following one of these identifiers suppresses
the ‘copy’ operation and returns a reference to the variable. The left operand may be
a general expression, but the right operand must be either a literal or a parenthesized
expression.

In the event that an operation requires no arguments, the convention is to pass the
empty record ‘[]1’ as an argument.

A.5.3 Operators

The general form of expression, involving make-port primitives, operation identifiers,
and apply primitives can be somewhat verbose. With each operation, programmers
may define an operator to abbreviate the three make-port, operation, and apply tokens
with a single operator token. Operator tokens consist of one or more characters from
the set ‘Q#,"&*+-=:<>7/]"’, excluding some specific sequences reserved to the syntax.

For example, the predefined type ‘integer’ defines the ‘+’ operator for the ‘add’
operation. So, the expression ‘a+5’ is equivalent to the expression ‘a.add!5’.

The conventions for operator definitions are: ‘@’ for ‘copy’ and ‘:=’ for ‘assign’.

A.6 Closures

Closures specify a sequence of statements to be executed within the context of an
object, a method, or another closure. The syntax consists of the ‘closure’ keyword, a
parameter definition, a left brace ‘{’, a sequence of pragmas, a sequence of statements,
and a closing right brace ‘}’. The closure pragmas are the same as the method pragmas.

Closures take a single parameter and returns a single result. A parameter declaration
provides a means for referring to the parameters of closures, methods, and object types.

111

The normal parameter declaration consists of a name, a colon, and a type name. For
example, ‘addend: integer’ specifies that the parameter is named ‘addend’ and that
it is an integer. The parameter captures the argument to an invocation, much as a
variable captures the result of an expression. The parameter object may then be used
as a variable.

Natasha only supports a single parameter, so programmers that desire multiple
parameters must collect them in a record. Natasha provides a record constructor for
building records at the point of use. This notation in the context of invocations is as
concise as a list of named parameters. For convenience, the name for a record parameter
may be dropped from its definition. In this case, the names of the record’s components
are directly accessible from the new scope. This enables the programmer to avoid
naming the record itself and provides direct access the record components similarly to
variables. For example, when using the parameter declaration

[[was: integer; now: integer;]]

Some operations need no parameter. In this case, the parameter may be left un-
specified and the compiler infers the ‘empty’ record type. Note that the empty record
must still be specified when invoking such an operation.

The statements of a closure include variable declarations, expressions to execute,
and a single ‘reply’ statement. These statements execute sequentially, in textual order.
The ‘reply’ statement computes the reply value and indicates its type. Statements
may occur in any order, but variables must be declared before used. The absence of a
‘reply’ is equivalent to a ‘reply [J;’ as the last statement in a closure.

The specification for a closure yields a port in execution. That is, the run-time value
of a closure specification is a port.

A.7 Object Types

An object type provides a mechanism for producing user-defined objects. An object
type is itself an object. For every object of a given type, there exists a type object.
The purpose of type objects is to provide a means to declare types at compile time and
to create objects at run time. Type objects generally respond to the ‘new’ operation
(with an appropriate parameter) and generate a new object. While this approach can
require considerable compiler support, the prototype language restricts the occurrence
of object types to the outermost scope so that they may be easily compiled.

The object type definition consists of the ‘object’ keyword, a parameter declaration,
a left brace ‘{’, a sequence of statements, and a closing right brace ‘}’ The statements
are variable declarations, method declarations, operator definitions, and expression to
execute. These statements may appear in any order, but variables and methods must
be declared before used. The variables of the object type define the components of the
tvpe.

Invoking the new operation on the type object produces an object of that type. The
parameter to the new operation must match the parameter of the object type. The
parts of the object type execute in the order of their specification. The result of the new

112

operation is the produced object after all of its type object parts have executed. For
example,

object willy: integer { nilly: false; };

defines an object taking an integer parameter. The object will then contain two vari-
ables, the integer ‘willy’ and the boolean ‘nilly’. However, this object is not useful
because it defines no methods for operations.

The definition of an object may provides a single method for handling each operation.
Methods describe the sequence of statements to execute when the named operation is
invoked. They take a single parameter and returns a single result. The method definition
syntax consists of the ‘method’ keyword, the operation identifier, a parameter definition.
a left brace ‘{’, a sequence of pragmas, a sequence of statements, and a closing right
brace ‘}".

The pragmas control the implementation of methods. The pragmas are:

$task — Create a task executing the method on the processor containing the object.
$1task — Create a task executing the method on the processor invoking the operation.

$migrate — If the object is on the processor invoking the operation, execute the method
as a procedure; otherwise, the object is on a remote processor, and create a task
executing the method on the processor containing the object.

$call — Execute the method as a procedure, using remote memory references if nec-
essary.

$inline — implement the method as procedures with gcc’s inline pragma, using
remote memory references if necessary.

Method statements include variable declarations, expressions to execute, and a single
reply statement. Statements may occur in any order, but variables must be declared
beforc used. The reply statement indicates the reply value. The type of the expression
in the reply statement determines the type of the operation result.

An object type is not available within its definition, which would normally imply
that no recursive definitions are possible. However, Natasha provides minimal support
for recursive definitions in three ways:

1. An object may refer to the pseudo-variable self. The compiler evaluates the type
of self only after completing the elaboration of the object definition.

2. Methods may be declared before they are defined. Forward declarations have the
form:

method identifier parameter forvard result-type-name

3. A second type of reply enables operations to return an object of the type being
defined. The cast statement converts a record with the same components as the
object type into an instance of the object. The resulting object is the operation’s
reply value. The compiler does not check that the record components and object
variables match, so the programmer must ensure that they do.

113

Figure A.l provides an example of a recursive operation. It contains an object type

that computes factorials, the creation of an instance of that type, and the computation
of 4'.

factorial: object ;; the factorial object has no parameter
{ ;; the forward declaration

method evaluate argument: integer forward integer;

;; the actual method for the evaluate operation

method evaluate argument: integer

{ result: 1; ;; result is 1 in the base case
argument "= 0 .if! closure
{ result := (self.evaluate!(argument - 1) * argument);
};
reply result;

};

}

instance: factorial.new!({];
finally: instance.evaluate!4;

Figure A.1: Example Computing Factorials Recursively

An operator definition provides an abbreviation for operation specification. It comes
in two forms,

operator binary-operator . identifier ! ;
operator unary-operator . identifier ! [] ;

for binary and unary operators, respectively. The user may define an arbitrary number
of operators, chosen from strings of the characters ‘O#),~&*+-=:<>?/|~". Each forms an
abbreviation for a sequence ‘.identifier!’ (binary) or ‘.identifier! (0’ (unary). A single
operator may have both a unary and a binary interpretation, the parser determines
which form is used. The appearance of an operator is semantically equivalent to its

syntactic replacement by its definition. Operator definitions apply only to the object
types which contain them.

114

